199 lines
9.4 KiB
Python
199 lines
9.4 KiB
Python
# -*- coding: utf-8 -*-
|
|
# @Author : LG
|
|
|
|
|
|
from PyQt5.QtCore import QThread, pyqtSignal
|
|
from json import load, dump
|
|
import os
|
|
from pycocotools import mask as coco_mask
|
|
import cv2
|
|
import imgviz
|
|
import yaml
|
|
|
|
class FROMCOCO(QThread):
|
|
message = pyqtSignal(int, int, str)
|
|
|
|
def __init__(self):
|
|
super(FROMCOCO, self).__init__()
|
|
self.coco_json_path:str = None
|
|
self.to_root:str = None
|
|
self.keep_crowd = False
|
|
|
|
self.cancel = False
|
|
|
|
def run(self):
|
|
assert self.coco_json_path.endswith('.json')
|
|
annos = {}
|
|
if os.path.exists(self.coco_json_path):
|
|
self.message.emit(None, None, 'Loading COCO json: {}'.format(self.coco_json_path))
|
|
|
|
with open(self.coco_json_path, 'r') as f:
|
|
dataset = load(f)
|
|
images = {image.get('id', None): {
|
|
'file_name': image.get('file_name', ''),
|
|
'height': image.get('height', ''),
|
|
'width': image.get('width', ''),
|
|
} for image in dataset.get('images', [])}
|
|
self.message.emit(None, None, ' Contain {} images.'.format(len(images)))
|
|
|
|
annotations = dataset.get('annotations', [])
|
|
self.message.emit(None, None, ' Contain {} annotations.'.format(len(annotations)))
|
|
|
|
categories = {categorie.get('id', None): {'name': categorie.get('name', '')} for categorie in
|
|
dataset.get('categories', [])}
|
|
self.message.emit(None, None, ' Contain {} categories.'.format(len(categories)))
|
|
|
|
self.message.emit(None, None, 'Loading annotations...')
|
|
for index, annotation in enumerate(annotations):
|
|
if self.cancel:
|
|
return
|
|
self.message.emit(index+1, len(annotations), None)
|
|
|
|
annotation_index = annotation.get('id')
|
|
annotation_image_id = annotation.get('image_id')
|
|
annotation_category_id = annotation.get('category_id')
|
|
|
|
file_name = images[annotation_image_id].get('file_name')
|
|
height = images[annotation_image_id].get('height')
|
|
width = images[annotation_image_id].get('width')
|
|
iscrowd = annotation["iscrowd"]
|
|
|
|
if file_name == '000000279278.jpg':
|
|
continue
|
|
if annotation_image_id not in annos:
|
|
annos[annotation_image_id] = {}
|
|
|
|
objects = annos[annotation_image_id].get('objects', [])
|
|
|
|
if iscrowd == 0:
|
|
# polygon
|
|
segmentations = annotation.get('segmentation')
|
|
for segmentation in segmentations:
|
|
xs = segmentation[::2]
|
|
ys = segmentation[1::2]
|
|
points = [[x, y] for x, y in zip(xs, ys)]
|
|
obj = {
|
|
'category': categories.get(annotation_category_id).get('name'),
|
|
'group': annotation_index,
|
|
'area': None,
|
|
'segmentation': points,
|
|
'layer': 1,
|
|
'bbox': None,
|
|
'iscrowd': iscrowd,
|
|
'note': ''
|
|
}
|
|
objects.append(obj)
|
|
elif iscrowd == 1 and self.keep_crowd:
|
|
segmentations = annotation.get('segmentation', {})
|
|
if isinstance(segmentations, dict) and 'counts' in segmentations:
|
|
# RLE
|
|
rles = coco_mask.frPyObjects(segmentations, height, width)
|
|
masks = coco_mask.decode(rles)
|
|
contours, _ = cv2.findContours(masks, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)
|
|
for contour in contours:
|
|
points = []
|
|
for point in contour:
|
|
x, y = point[0]
|
|
points.append([float(x), float(y)])
|
|
obj = {
|
|
'category': categories.get(annotation_category_id).get('name'),
|
|
'group': annotation_index,
|
|
'area': None,
|
|
'segmentation': points,
|
|
'layer': 1,
|
|
'bbox': None,
|
|
'iscrowd': iscrowd,
|
|
'note': ''
|
|
}
|
|
objects.append(obj)
|
|
else:
|
|
# polygon
|
|
for segmentation in segmentations:
|
|
xs = segmentation[::2]
|
|
ys = segmentation[1::2]
|
|
points = [[x, y] for x, y in zip(xs, ys)]
|
|
obj = {
|
|
'category': categories.get(annotation_category_id).get('name'),
|
|
'group': annotation_index,
|
|
'area': None,
|
|
'segmentation': points,
|
|
'layer': 1,
|
|
'bbox': None,
|
|
'iscrowd': iscrowd,
|
|
'note': ''
|
|
}
|
|
objects.append(obj)
|
|
else:
|
|
pass
|
|
annos[annotation_image_id]['objects'] = objects
|
|
|
|
self.message.emit(None, None, 'Start convert to ISAT json...')
|
|
for index, (image_id, values) in enumerate(annos.items()):
|
|
if self.cancel:
|
|
return
|
|
image_path = images[image_id].get('file_name')
|
|
folder, name = os.path.split(image_path)
|
|
height = images[image_id].get('height')
|
|
width = images[image_id].get('width')
|
|
objects = values.get('objects', [])
|
|
|
|
isat_anno = {}
|
|
isat_anno['info'] = {}
|
|
isat_anno['info']['description'] = 'ISAT'
|
|
isat_anno['info']['folder'] = folder
|
|
isat_anno['info']['name'] = name
|
|
isat_anno['info']['width'] = width
|
|
isat_anno['info']['height'] = height
|
|
isat_anno['info']['depth'] = None
|
|
isat_anno['info']['note'] = ''
|
|
isat_anno['objects'] = []
|
|
# coco annotation的id 太大了,这里缩一下,每张图片重新开始计数
|
|
groups_dict = {}
|
|
for obj in objects:
|
|
group = obj.get('group', 0)
|
|
if group not in groups_dict:
|
|
groups_dict[group] = len(groups_dict) + 1
|
|
for obj in objects:
|
|
object = {}
|
|
object['category'] = obj.get('category', '')
|
|
if 'background' in object['category']:
|
|
object['group'] = 0
|
|
else:
|
|
object['group'] = groups_dict.get(obj.get('group', 0))
|
|
object['segmentation'] = obj.get('segmentation', [])
|
|
object['area'] = obj.get('area', None)
|
|
object['layer'] = obj.get('layer', None)
|
|
object['bbox'] = obj.get('bbox', None)
|
|
object['iscrowd'] = obj.get('iscrowd', 0)
|
|
object['note'] = obj.get('note', '')
|
|
isat_anno['objects'].append(object)
|
|
json_name = '.'.join(name.split('.')[:-1]) + '.json'
|
|
save_json = os.path.join(self.to_root, json_name)
|
|
|
|
self.message.emit(index + 1, len(annos), '{:>8d}/{:<8d} | Converting to {}'.format(index + 1, len(annos), json_name))
|
|
|
|
with open(save_json, 'w') as f:
|
|
try:
|
|
dump(isat_anno, f)
|
|
self.message.emit(None, None, ' ' * 18 + '| Saved finished.')
|
|
|
|
except Exception as e:
|
|
self.message.emit(index + 1, len(annos), ' ' * 18 + '| Save error: {}'.format(e))
|
|
|
|
### 类别文件
|
|
cmap = imgviz.label_colormap()
|
|
sorted(categories)
|
|
for index, (k, categorie_dict) in enumerate(categories.items()):
|
|
r, g, b = cmap[index + 1]
|
|
categorie_dict['color'] = "#{:02x}{:02x}{:02x}".format(r, g, b)
|
|
|
|
s = yaml.dump({'label': list(categories.values())})
|
|
with open(os.path.join(self.to_root, 'categorys.yaml'), 'w') as f:
|
|
f.write(s)
|
|
self.message.emit(None, None, 'Generate categorys.yaml.')
|
|
else:
|
|
self.message.emit(None, None, '{} not exist.'.format(self.coco_json_path))
|
|
self.message.emit(None, None, '*** Finished! ***')
|
|
|
|
def __del__(self):
|
|
self.wait() |