ISAT_with_sam/tools/tococo.py
2023-04-27 21:59:14 +08:00

200 lines
8.6 KiB
Python

# -*- coding: utf-8 -*-
# @Author : LG
from json import load, dump
import os
from pycocotools import mask as coco_mask
import cv2
import imgviz
class COCOConverter:
def __init__(self, ):
pass
# labels = cfg.get('label', [])
# for index, label_dict in enumerate(labels):
# category = label_dict.get('name', 'unknow')
# color = label_dict.get('color', '#000000')
def convert_to_coco(self, isat_json_root:str, to_path:str):
coco_anno = {}
# info
coco_anno['info'] = {}
coco_anno['info']['description'] = 'coco from ISAT'
coco_anno['info']['version'] = None
coco_anno['info']['year'] = None
coco_anno['info']['contributor'] = None
coco_anno['info']['date_created'] = None
# licenses
coco_anno['licenses'] = []
coco_anno['licenses'][0] = {}
coco_anno['licenses'][0]['url'] = None
coco_anno['licenses'][0]['id'] = 0
coco_anno['licenses'][0]['name'] = None
# images and annotations
coco_anno['images'] = []
coco_anno['annotations'] = []
jsons = [f for f in os.listdir(isat_json_root) if f.endswith('.json')]
for json in jsons:
coco_image_info = {}
dataset = load(os.path.join(isat_json_root, json))
info = dataset.get('info', {})
description = info.get('description', '')
if not description.startswith('ISAT'):
# 不是ISAT格式json
continue
img_name = info.get('name', '')
width = info.get('width', None)
height = info.get('height', None)
depth = info.get('depth', None)
note = info.get('note', '')
objects = dataset.get('objects', [])
for obj in objects:
category = obj.get('category', 'unknow')
group = obj.get('group', 0)
if group is None: group = 0
segmentation = obj.get('segmentation', [])
iscrowd = obj.get('iscrowd', 0)
note = obj.get('note', '')
area = obj.get('area', 0)
layer = obj.get('layer', 2)
bbox = obj.get('bbox', [])
def convert_from_coco(self, coco_json:str, to_path:str, keep_crowd:bool=False):
assert coco_json.endswith('.json')
annos = {}
if os.path.exists(coco_json):
with open(coco_json, 'r') as f:
dataset = load(f)
images = {image.get('id', None):{
'file_name': image.get('file_name', ''),
'height': image.get('height', ''),
'width': image.get('width', ''),
} for image in dataset.get('images', [])}
annotations = dataset.get('annotations', [])
categories = {categorie.get('id', None): {'name': categorie.get('name', '')} for categorie in dataset.get('categories', [])}
for index, annotation in enumerate(annotations):
annotation_index = annotation.get('id')
annotation_image_id = annotation.get('image_id')
annotation_category_id = annotation.get('category_id')
file_name = images[annotation_image_id].get('file_name')
height = images[annotation_image_id].get('height')
width = images[annotation_image_id].get('width')
iscrowd = annotation["iscrowd"]
if file_name == '000000279278.jpg':
continue
if annotation_image_id not in annos:
annos[annotation_image_id] = {}
objects = annos[annotation_image_id].get('objects', [])
if iscrowd == 0:
# polygon
segmentations = annotation.get('segmentation')
for segmentation in segmentations:
xs = segmentation[::2]
ys = segmentation[1::2]
points = [[x, y] for x ,y in zip(xs, ys)]
obj = {
'category': categories.get(annotation_category_id).get('name'),
'group': annotation_index,
'area': None,
'segmentation': points,
'layer': 1,
'bbox': None,
'iscrowd': iscrowd,
'note': ''
}
objects.append(obj)
elif iscrowd == 1 and keep_crowd:
# RLE
segmentations = annotation.get('segmentation', {})
rles = coco_mask.frPyObjects(segmentations, height, width)
masks = coco_mask.decode(rles)
contours, _ = cv2.findContours(masks, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)
for contour in contours:
points = []
for point in contour:
x, y = point[0]
points.append([float(x), float(y)])
obj = {
'category': categories.get(annotation_category_id).get('name'),
'group': annotation_index,
'area': None,
'segmentation': points,
'layer': 1,
'bbox': None,
'iscrowd': iscrowd,
'note': ''
}
objects.append(obj)
else:
pass
annos[annotation_image_id]['objects'] = objects
for image_id, values in annos.items():
image_path = images[image_id].get('file_name')
folder, name = os.path.split(image_path)
height = images[image_id].get('height')
width = images[image_id].get('width')
objects = values.get('objects', [])
isat_anno = {}
isat_anno['info'] = {}
isat_anno['info']['description'] = 'ISAT'
isat_anno['info']['folder'] = folder
isat_anno['info']['name'] = name
isat_anno['info']['width'] = width
isat_anno['info']['height'] = height
isat_anno['info']['depth'] = None
isat_anno['info']['note'] = ''
isat_anno['objects'] = []
# coco annotation的id 太大了,这里缩一下,每张图片重新开始计数
groups_dict = {}
for obj in objects:
group = obj.get('group', 0)
if group not in groups_dict:
groups_dict[group] = len(groups_dict)+1
for obj in objects:
object = {}
object['category'] = obj.get('category', '')
object['group'] = groups_dict.get(obj.get('group', 0))
object['segmentation'] = obj.get('segmentation', [])
object['area'] = obj.get('area', None)
object['layer'] = obj.get('layer', None)
object['bbox'] = obj.get('bbox', None)
object['iscrowd'] = obj.get('iscrowd', 0)
object['note'] = obj.get('note', '')
isat_anno['objects'].append(object)
json_name = '.'.join(name.split('.')[:-1]) + '.json'
save_json = os.path.join(to_path, json_name)
with open(save_json, 'w') as f:
try:
dump(isat_anno, f)
print('Converted coco to ISAT: {}'.format(json_name))
except Exception as e:
print('Convert coco to ISAT {} ,error: {}'.format(json_name, e))
### 类别文件
cmap = imgviz.label_colormap()
if __name__ == '__main__':
coco = COCOConverter()
coco.convert_from_coco(
'/mnt/disk/coco/annotations/instances_val2017.json',
'/mnt/disk/coco/isat_json',
True
)