删除 'plugins/filter_collection/bilater.py'
This commit is contained in:
		
							parent
							
								
									84d888dc07
								
							
						
					
					
						commit
						e8506d069a
					
				@ -1,135 +0,0 @@
 | 
				
			|||||||
# from misc import AlgFrontend
 | 
					 | 
				
			||||||
# from osgeo import gdal, gdal_array
 | 
					 | 
				
			||||||
# from skimage.filters import rank
 | 
					 | 
				
			||||||
# from skimage.morphology import  rectangle
 | 
					 | 
				
			||||||
# from filter_collection import FILTER
 | 
					 | 
				
			||||||
# from PyQt5.QtWidgets import QDialog, QAction
 | 
					 | 
				
			||||||
# from PyQt5 import QtCore, QtGui, QtWidgets
 | 
					 | 
				
			||||||
# from rscder.utils.project import PairLayer, Project, RasterLayer, ResultPointLayer
 | 
					 | 
				
			||||||
# import os
 | 
					 | 
				
			||||||
# from datetime import datetime
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# import cv2 as cv
 | 
					 | 
				
			||||||
# import numpy as np
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# cv.namedWindow("image")
 | 
					 | 
				
			||||||
# #d表示滤波窗口的直径
 | 
					 | 
				
			||||||
# #sigmaSpace表示空间域方差,以及边缘处理方式
 | 
					 | 
				
			||||||
# #sigmaColor表示像素域方差
 | 
					 | 
				
			||||||
# cv.createTrackbar("d","image",0,255,print)
 | 
					 | 
				
			||||||
# cv.createTrackbar("sigmaColor","image",0,255,print)
 | 
					 | 
				
			||||||
# cv.createTrackbar("sigmaSpace","image",0,255,print)
 | 
					 | 
				
			||||||
# img = cv.imread("test-data/BBB.tif",0)
 | 
					 | 
				
			||||||
# while(1):
 | 
					 | 
				
			||||||
#       d = cv.getTrackbarPos("d","image")
 | 
					 | 
				
			||||||
#       sigmaColor = cv.getTrackbarPos("sigmaColor","image")
 | 
					 | 
				
			||||||
#       sigmaSpace = cv.getTrackbarPos("sigmaSpace","image")
 | 
					 | 
				
			||||||
#       result_img = cv.bilateralFilter(img,d,sigmaColor,sigmaSpace)
 | 
					 | 
				
			||||||
#       cv.imshow("result",result_img)
 | 
					 | 
				
			||||||
#       k = cv.waitKey(1) & 0xFF
 | 
					 | 
				
			||||||
#       if k ==27:
 | 
					 | 
				
			||||||
#          break
 | 
					 | 
				
			||||||
# cv.destroyAllWindows()
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
import os
 | 
					 | 
				
			||||||
import cv2
 | 
					 | 
				
			||||||
import numpy as np
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
def BilateralFilter_11(img_path='test-data/BBB.tif'):
 | 
					 | 
				
			||||||
    img_src=cv2.imread(img_path)
 | 
					 | 
				
			||||||
    img=cv2.resize(src=img_src,dsize=(1020,1020))
 | 
					 | 
				
			||||||
    img=cv2.bilateralFilter(img,5,110,110)
 | 
					 | 
				
			||||||
    cv2.imshow('img',img)
 | 
					 | 
				
			||||||
    cv2.imshow('img_src',img_src)
 | 
					 | 
				
			||||||
    cv2.waitKey(0)
 | 
					 | 
				
			||||||
    cv2.destroyAllWindows()
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# def detectBilateralFilter():
 | 
					 | 
				
			||||||
#     cap=cv2.VideoCapture(0)
 | 
					 | 
				
			||||||
#     while cap.isOpened():
 | 
					 | 
				
			||||||
#         OK,frame=cap.read()
 | 
					 | 
				
			||||||
#         img_src = cv2.imread(frame)
 | 
					 | 
				
			||||||
#         img = cv2.resize(src=img_src, dsize=(450, 450))
 | 
					 | 
				
			||||||
#         img = cv2.bilateralFilter(img, 10, 150, 150)
 | 
					 | 
				
			||||||
#         cv2.imshow('img', img)
 | 
					 | 
				
			||||||
#         if cv2.waitKey(1)&0XFF==27:
 | 
					 | 
				
			||||||
#             break
 | 
					 | 
				
			||||||
#     cap.release()
 | 
					 | 
				
			||||||
#     cv2.destroyAllWindows()
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
if __name__ == '__main__':
 | 
					 | 
				
			||||||
    print('Pycharm')
 | 
					 | 
				
			||||||
#     BilateralFilter_11()
 | 
					 | 
				
			||||||
#     detectBilateralFilter()
 | 
					 | 
				
			||||||
    BilateralFilter_11()
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
#
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# import numpy as np
 | 
					 | 
				
			||||||
# from scipy import signal
 | 
					 | 
				
			||||||
# import cv2
 | 
					 | 
				
			||||||
# import random
 | 
					 | 
				
			||||||
# import math
 | 
					 | 
				
			||||||
# #双边滤波
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# def getClosenessWeight(sigma_g,H,W):
 | 
					 | 
				
			||||||
#     r,c=np.mgrid[0:H:1,0:W:1]
 | 
					 | 
				
			||||||
#     r -= (H - 1) // 2
 | 
					 | 
				
			||||||
#     c -= int(W - 1) // 2
 | 
					 | 
				
			||||||
#     closeWeight=np.exp(-0.5*(np.power(r,2)+np.power(c,2))/math.pow(sigma_g,2))
 | 
					 | 
				
			||||||
#     return closeWeight
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# def bfltGray(I,H,W,sigma_g,sigma_d):
 | 
					 | 
				
			||||||
#     #构建空间距离权重模板
 | 
					 | 
				
			||||||
#     closenessWeight=getClosenessWeight(sigma_g,H,W)
 | 
					 | 
				
			||||||
#     #模板的中心点位置
 | 
					 | 
				
			||||||
#     cH = (H - 1) // 2 #//表示整数除法
 | 
					 | 
				
			||||||
#     cW = (W - 1) // 2
 | 
					 | 
				
			||||||
#     #图像矩阵的行数和列数
 | 
					 | 
				
			||||||
#     rows,cols=I.shape
 | 
					 | 
				
			||||||
#     #双边滤波后的结果
 | 
					 | 
				
			||||||
#     bfltGrayImage=np.zeros(I.shape,np.float32)
 | 
					 | 
				
			||||||
#     for r in range(rows):
 | 
					 | 
				
			||||||
#         for c in range(cols):
 | 
					 | 
				
			||||||
#             pixel=I[r][c]
 | 
					 | 
				
			||||||
#             #判断边界
 | 
					 | 
				
			||||||
#             rTop=0 if r-cH<0 else r-cH
 | 
					 | 
				
			||||||
#             rBottom=rows-1 if r+cH>rows-1 else r+cH
 | 
					 | 
				
			||||||
#             cLeft=0 if c-cW<0 else c-cW
 | 
					 | 
				
			||||||
#             cRight=cols-1 if c+cW>cols-1 else c+cW
 | 
					 | 
				
			||||||
#             # 权重模板作用的区域
 | 
					 | 
				
			||||||
#             region=I[rTop:rBottom+1,cLeft:cRight+1]
 | 
					 | 
				
			||||||
#             #构建灰度值相似性的权重因子
 | 
					 | 
				
			||||||
#             similarityWeightTemp=np.exp(-0.5*np.power(region-pixel,2.0)/math.pow(sigma_d,2))
 | 
					 | 
				
			||||||
#             #similarityWeightTemp = np.exp(-0.5 * np.power(region - pixel, 2.0) / math.pow(sigma_d, 2))
 | 
					 | 
				
			||||||
#             closenessWeightTemp=closenessWeight[rTop-r+cH:rBottom-r+cH+1,cLeft-c+cW:cRight-c+cW+1]
 | 
					 | 
				
			||||||
#             #两个权重模板相乘
 | 
					 | 
				
			||||||
#             weightTemp=similarityWeightTemp*closenessWeightTemp
 | 
					 | 
				
			||||||
#             #归一化权重模板
 | 
					 | 
				
			||||||
#             weightTemp=weightTemp/np.sum(weightTemp)
 | 
					 | 
				
			||||||
#             #权重模板和对应的领域值相乘求和
 | 
					 | 
				
			||||||
#             bfltGrayImage[r][c]=np.sum(region*weightTemp)
 | 
					 | 
				
			||||||
#     return bfltGrayImage
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# if __name__=='__main__':   ##启动语句
 | 
					 | 
				
			||||||
#     a= cv2.imread('test-data/BBB.tif', cv2.IMREAD_UNCHANGED)  # 路径名中不能有中文,会出错,cv2.
 | 
					 | 
				
			||||||
#     image1 = cv2.split(a)[0]#蓝通道
 | 
					 | 
				
			||||||
#     cv2.imshow("image1",image1)
 | 
					 | 
				
			||||||
#     image1=image1/255.0
 | 
					 | 
				
			||||||
#     #双边滤波
 | 
					 | 
				
			||||||
#     bfltImage=bfltGray(image1,3,3,19,0.2)
 | 
					 | 
				
			||||||
#     cv2.imshow("增强后图",bfltImage)
 | 
					 | 
				
			||||||
#     cv2.waitKey(0)
 | 
					 | 
				
			||||||
#     cv2.destroyAllWindows()
 | 
					 | 
				
			||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user