删除 'plugins/filter_collection/bilater.py'
This commit is contained in:
parent
84d888dc07
commit
e8506d069a
@ -1,135 +0,0 @@
|
|||||||
# from misc import AlgFrontend
|
|
||||||
# from osgeo import gdal, gdal_array
|
|
||||||
# from skimage.filters import rank
|
|
||||||
# from skimage.morphology import rectangle
|
|
||||||
# from filter_collection import FILTER
|
|
||||||
# from PyQt5.QtWidgets import QDialog, QAction
|
|
||||||
# from PyQt5 import QtCore, QtGui, QtWidgets
|
|
||||||
# from rscder.utils.project import PairLayer, Project, RasterLayer, ResultPointLayer
|
|
||||||
# import os
|
|
||||||
# from datetime import datetime
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# import cv2 as cv
|
|
||||||
# import numpy as np
|
|
||||||
|
|
||||||
# cv.namedWindow("image")
|
|
||||||
# #d表示滤波窗口的直径
|
|
||||||
# #sigmaSpace表示空间域方差,以及边缘处理方式
|
|
||||||
# #sigmaColor表示像素域方差
|
|
||||||
# cv.createTrackbar("d","image",0,255,print)
|
|
||||||
# cv.createTrackbar("sigmaColor","image",0,255,print)
|
|
||||||
# cv.createTrackbar("sigmaSpace","image",0,255,print)
|
|
||||||
# img = cv.imread("test-data/BBB.tif",0)
|
|
||||||
# while(1):
|
|
||||||
# d = cv.getTrackbarPos("d","image")
|
|
||||||
# sigmaColor = cv.getTrackbarPos("sigmaColor","image")
|
|
||||||
# sigmaSpace = cv.getTrackbarPos("sigmaSpace","image")
|
|
||||||
# result_img = cv.bilateralFilter(img,d,sigmaColor,sigmaSpace)
|
|
||||||
# cv.imshow("result",result_img)
|
|
||||||
# k = cv.waitKey(1) & 0xFF
|
|
||||||
# if k ==27:
|
|
||||||
# break
|
|
||||||
# cv.destroyAllWindows()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
import os
|
|
||||||
import cv2
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
def BilateralFilter_11(img_path='test-data/BBB.tif'):
|
|
||||||
img_src=cv2.imread(img_path)
|
|
||||||
img=cv2.resize(src=img_src,dsize=(1020,1020))
|
|
||||||
img=cv2.bilateralFilter(img,5,110,110)
|
|
||||||
cv2.imshow('img',img)
|
|
||||||
cv2.imshow('img_src',img_src)
|
|
||||||
cv2.waitKey(0)
|
|
||||||
cv2.destroyAllWindows()
|
|
||||||
|
|
||||||
|
|
||||||
# def detectBilateralFilter():
|
|
||||||
# cap=cv2.VideoCapture(0)
|
|
||||||
# while cap.isOpened():
|
|
||||||
# OK,frame=cap.read()
|
|
||||||
# img_src = cv2.imread(frame)
|
|
||||||
# img = cv2.resize(src=img_src, dsize=(450, 450))
|
|
||||||
# img = cv2.bilateralFilter(img, 10, 150, 150)
|
|
||||||
# cv2.imshow('img', img)
|
|
||||||
# if cv2.waitKey(1)&0XFF==27:
|
|
||||||
# break
|
|
||||||
# cap.release()
|
|
||||||
# cv2.destroyAllWindows()
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
print('Pycharm')
|
|
||||||
# BilateralFilter_11()
|
|
||||||
# detectBilateralFilter()
|
|
||||||
BilateralFilter_11()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# import numpy as np
|
|
||||||
# from scipy import signal
|
|
||||||
# import cv2
|
|
||||||
# import random
|
|
||||||
# import math
|
|
||||||
# #双边滤波
|
|
||||||
|
|
||||||
|
|
||||||
# def getClosenessWeight(sigma_g,H,W):
|
|
||||||
# r,c=np.mgrid[0:H:1,0:W:1]
|
|
||||||
# r -= (H - 1) // 2
|
|
||||||
# c -= int(W - 1) // 2
|
|
||||||
# closeWeight=np.exp(-0.5*(np.power(r,2)+np.power(c,2))/math.pow(sigma_g,2))
|
|
||||||
# return closeWeight
|
|
||||||
|
|
||||||
# def bfltGray(I,H,W,sigma_g,sigma_d):
|
|
||||||
# #构建空间距离权重模板
|
|
||||||
# closenessWeight=getClosenessWeight(sigma_g,H,W)
|
|
||||||
# #模板的中心点位置
|
|
||||||
# cH = (H - 1) // 2 #//表示整数除法
|
|
||||||
# cW = (W - 1) // 2
|
|
||||||
# #图像矩阵的行数和列数
|
|
||||||
# rows,cols=I.shape
|
|
||||||
# #双边滤波后的结果
|
|
||||||
# bfltGrayImage=np.zeros(I.shape,np.float32)
|
|
||||||
# for r in range(rows):
|
|
||||||
# for c in range(cols):
|
|
||||||
# pixel=I[r][c]
|
|
||||||
# #判断边界
|
|
||||||
# rTop=0 if r-cH<0 else r-cH
|
|
||||||
# rBottom=rows-1 if r+cH>rows-1 else r+cH
|
|
||||||
# cLeft=0 if c-cW<0 else c-cW
|
|
||||||
# cRight=cols-1 if c+cW>cols-1 else c+cW
|
|
||||||
# # 权重模板作用的区域
|
|
||||||
# region=I[rTop:rBottom+1,cLeft:cRight+1]
|
|
||||||
# #构建灰度值相似性的权重因子
|
|
||||||
# similarityWeightTemp=np.exp(-0.5*np.power(region-pixel,2.0)/math.pow(sigma_d,2))
|
|
||||||
# #similarityWeightTemp = np.exp(-0.5 * np.power(region - pixel, 2.0) / math.pow(sigma_d, 2))
|
|
||||||
# closenessWeightTemp=closenessWeight[rTop-r+cH:rBottom-r+cH+1,cLeft-c+cW:cRight-c+cW+1]
|
|
||||||
# #两个权重模板相乘
|
|
||||||
# weightTemp=similarityWeightTemp*closenessWeightTemp
|
|
||||||
# #归一化权重模板
|
|
||||||
# weightTemp=weightTemp/np.sum(weightTemp)
|
|
||||||
# #权重模板和对应的领域值相乘求和
|
|
||||||
# bfltGrayImage[r][c]=np.sum(region*weightTemp)
|
|
||||||
# return bfltGrayImage
|
|
||||||
|
|
||||||
|
|
||||||
# if __name__=='__main__': ##启动语句
|
|
||||||
# a= cv2.imread('test-data/BBB.tif', cv2.IMREAD_UNCHANGED) # 路径名中不能有中文,会出错,cv2.
|
|
||||||
# image1 = cv2.split(a)[0]#蓝通道
|
|
||||||
# cv2.imshow("image1",image1)
|
|
||||||
# image1=image1/255.0
|
|
||||||
# #双边滤波
|
|
||||||
# bfltImage=bfltGray(image1,3,3,19,0.2)
|
|
||||||
# cv2.imshow("增强后图",bfltImage)
|
|
||||||
# cv2.waitKey(0)
|
|
||||||
# cv2.destroyAllWindows()
|
|
Loading…
x
Reference in New Issue
Block a user