删除 'plugins/filter_collection/bilater.py'

This commit is contained in:
蒋若愚 2022-11-11 13:31:39 +08:00
parent 84d888dc07
commit e8506d069a

View File

@ -1,135 +0,0 @@
# from misc import AlgFrontend
# from osgeo import gdal, gdal_array
# from skimage.filters import rank
# from skimage.morphology import rectangle
# from filter_collection import FILTER
# from PyQt5.QtWidgets import QDialog, QAction
# from PyQt5 import QtCore, QtGui, QtWidgets
# from rscder.utils.project import PairLayer, Project, RasterLayer, ResultPointLayer
# import os
# from datetime import datetime
# import cv2 as cv
# import numpy as np
# cv.namedWindow("image")
# #d表示滤波窗口的直径
# #sigmaSpace表示空间域方差以及边缘处理方式
# #sigmaColor表示像素域方差
# cv.createTrackbar("d","image",0,255,print)
# cv.createTrackbar("sigmaColor","image",0,255,print)
# cv.createTrackbar("sigmaSpace","image",0,255,print)
# img = cv.imread("test-data/BBB.tif",0)
# while(1):
# d = cv.getTrackbarPos("d","image")
# sigmaColor = cv.getTrackbarPos("sigmaColor","image")
# sigmaSpace = cv.getTrackbarPos("sigmaSpace","image")
# result_img = cv.bilateralFilter(img,d,sigmaColor,sigmaSpace)
# cv.imshow("result",result_img)
# k = cv.waitKey(1) & 0xFF
# if k ==27:
# break
# cv.destroyAllWindows()
import os
import cv2
import numpy as np
def BilateralFilter_11(img_path='test-data/BBB.tif'):
img_src=cv2.imread(img_path)
img=cv2.resize(src=img_src,dsize=(1020,1020))
img=cv2.bilateralFilter(img,5,110,110)
cv2.imshow('img',img)
cv2.imshow('img_src',img_src)
cv2.waitKey(0)
cv2.destroyAllWindows()
# def detectBilateralFilter():
# cap=cv2.VideoCapture(0)
# while cap.isOpened():
# OK,frame=cap.read()
# img_src = cv2.imread(frame)
# img = cv2.resize(src=img_src, dsize=(450, 450))
# img = cv2.bilateralFilter(img, 10, 150, 150)
# cv2.imshow('img', img)
# if cv2.waitKey(1)&0XFF==27:
# break
# cap.release()
# cv2.destroyAllWindows()
if __name__ == '__main__':
print('Pycharm')
# BilateralFilter_11()
# detectBilateralFilter()
BilateralFilter_11()
#
# import numpy as np
# from scipy import signal
# import cv2
# import random
# import math
# #双边滤波
# def getClosenessWeight(sigma_g,H,W):
# r,c=np.mgrid[0:H:1,0:W:1]
# r -= (H - 1) // 2
# c -= int(W - 1) // 2
# closeWeight=np.exp(-0.5*(np.power(r,2)+np.power(c,2))/math.pow(sigma_g,2))
# return closeWeight
# def bfltGray(I,H,W,sigma_g,sigma_d):
# #构建空间距离权重模板
# closenessWeight=getClosenessWeight(sigma_g,H,W)
# #模板的中心点位置
# cH = (H - 1) // 2 #//表示整数除法
# cW = (W - 1) // 2
# #图像矩阵的行数和列数
# rows,cols=I.shape
# #双边滤波后的结果
# bfltGrayImage=np.zeros(I.shape,np.float32)
# for r in range(rows):
# for c in range(cols):
# pixel=I[r][c]
# #判断边界
# rTop=0 if r-cH<0 else r-cH
# rBottom=rows-1 if r+cH>rows-1 else r+cH
# cLeft=0 if c-cW<0 else c-cW
# cRight=cols-1 if c+cW>cols-1 else c+cW
# # 权重模板作用的区域
# region=I[rTop:rBottom+1,cLeft:cRight+1]
# #构建灰度值相似性的权重因子
# similarityWeightTemp=np.exp(-0.5*np.power(region-pixel,2.0)/math.pow(sigma_d,2))
# #similarityWeightTemp = np.exp(-0.5 * np.power(region - pixel, 2.0) / math.pow(sigma_d, 2))
# closenessWeightTemp=closenessWeight[rTop-r+cH:rBottom-r+cH+1,cLeft-c+cW:cRight-c+cW+1]
# #两个权重模板相乘
# weightTemp=similarityWeightTemp*closenessWeightTemp
# #归一化权重模板
# weightTemp=weightTemp/np.sum(weightTemp)
# #权重模板和对应的领域值相乘求和
# bfltGrayImage[r][c]=np.sum(region*weightTemp)
# return bfltGrayImage
# if __name__=='__main__': ##启动语句
# a= cv2.imread('test-data/BBB.tif', cv2.IMREAD_UNCHANGED) # 路径名中不能有中文,会出错,cv2.
# image1 = cv2.split(a)[0]#蓝通道
# cv2.imshow("image1",image1)
# image1=image1/255.0
# #双边滤波
# bfltImage=bfltGray(image1,3,3,19,0.2)
# cv2.imshow("增强后图",bfltImage)
# cv2.waitKey(0)
# cv2.destroyAllWindows()