import functools import torch import torch.utils.model_zoo as model_zoo from ._preprocessing import preprocess_input from .densenet import densenet_encoders from .dpn import dpn_encoders from .efficientnet import efficient_net_encoders from .inceptionresnetv2 import inceptionresnetv2_encoders from .inceptionv4 import inceptionv4_encoders from .mobilenet import mobilenet_encoders from .resnet import resnet_encoders from .senet import senet_encoders from .timm_efficientnet import timm_efficientnet_encoders from .timm_gernet import timm_gernet_encoders from .timm_mobilenetv3 import timm_mobilenetv3_encoders from .timm_regnet import timm_regnet_encoders from .timm_res2net import timm_res2net_encoders from .timm_resnest import timm_resnest_encoders from .timm_sknet import timm_sknet_encoders from .timm_universal import TimmUniversalEncoder from .vgg import vgg_encoders from .xception import xception_encoders from .swin_transformer import swin_transformer_encoders from .mit_encoder import mit_encoders # from .hrnet import hrnet_encoders DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' encoders = {} encoders.update(resnet_encoders) encoders.update(dpn_encoders) encoders.update(vgg_encoders) encoders.update(senet_encoders) encoders.update(densenet_encoders) encoders.update(inceptionresnetv2_encoders) encoders.update(inceptionv4_encoders) encoders.update(efficient_net_encoders) encoders.update(mobilenet_encoders) encoders.update(xception_encoders) encoders.update(timm_efficientnet_encoders) encoders.update(timm_resnest_encoders) encoders.update(timm_res2net_encoders) encoders.update(timm_regnet_encoders) encoders.update(timm_sknet_encoders) encoders.update(timm_mobilenetv3_encoders) encoders.update(timm_gernet_encoders) encoders.update(swin_transformer_encoders) encoders.update(mit_encoders) # encoders.update(hrnet_encoders) def get_encoder(name, in_channels=3, depth=5, weights=None, output_stride=32, **kwargs): if name.startswith("tu-"): name = name[3:] encoder = TimmUniversalEncoder( name=name, in_channels=in_channels, depth=depth, output_stride=output_stride, pretrained=weights is not None, **kwargs ) return encoder try: Encoder = encoders[name]["encoder"] except KeyError: raise KeyError("Wrong encoder name `{}`, supported encoders: {}".format(name, list(encoders.keys()))) params = encoders[name]["params"] params.update(depth=depth) encoder = Encoder(**params) if weights is not None: try: settings = encoders[name]["pretrained_settings"][weights] except KeyError: raise KeyError("Wrong pretrained weights `{}` for encoder `{}`. Available options are: {}".format( weights, name, list(encoders[name]["pretrained_settings"].keys()), )) encoder.load_state_dict(model_zoo.load_url(settings["url"], map_location=torch.device(DEVICE))) encoder.set_in_channels(in_channels, pretrained=weights is not None) if output_stride != 32: encoder.make_dilated(output_stride) return encoder def get_encoder_names(): return list(encoders.keys()) def get_preprocessing_params(encoder_name, pretrained="imagenet"): settings = encoders[encoder_name]["pretrained_settings"] if pretrained not in settings.keys(): raise ValueError("Available pretrained options {}".format(settings.keys())) formatted_settings = {} formatted_settings["input_space"] = settings[pretrained].get("input_space") formatted_settings["input_range"] = settings[pretrained].get("input_range") formatted_settings["mean"] = settings[pretrained].get("mean") formatted_settings["std"] = settings[pretrained].get("std") return formatted_settings def get_preprocessing_fn(encoder_name, pretrained="imagenet"): params = get_preprocessing_params(encoder_name, pretrained=pretrained) return functools.partial(preprocess_input, **params)