from typing import Optional, Union, List from .decoder import DPFCNDecoder from ..encoders import get_encoder from ..base import SegmentationModel from ..base import SegmentationHead, ClassificationHead class DPFCN(SegmentationModel): def __init__( self, encoder_name: str = "resnet34", encoder_depth: int = 5, encoder_weights: Optional[str] = "imagenet", decoder_use_batchnorm: bool = True, decoder_channels: List[int] = (256, 128, 64, 32, 16), decoder_attention_type: Optional[str] = None, in_channels: int = 3, classes: int = 1, activation: Optional[Union[str, callable]] = None, aux_params: Optional[dict] = None, siam_encoder: bool = True, fusion_form: str = "concat", **kwargs ): super().__init__() self.siam_encoder = siam_encoder self.encoder = get_encoder( encoder_name, in_channels=in_channels, depth=encoder_depth, weights=encoder_weights, ) if not self.siam_encoder: self.encoder_non_siam = get_encoder( encoder_name, in_channels=in_channels, depth=encoder_depth, weights=encoder_weights, ) self.decoder = DPFCNDecoder( encoder_channels=self.encoder.out_channels, decoder_channels=decoder_channels, n_blocks=encoder_depth, use_batchnorm=decoder_use_batchnorm, center=True if encoder_name.startswith("vgg") else False, attention_type=decoder_attention_type, fusion_form=fusion_form, ) self.segmentation_head = SegmentationHead( in_channels=decoder_channels[-1], out_channels=classes, activation=activation, kernel_size=3, ) if aux_params is not None: self.classification_head = ClassificationHead( in_channels=self.encoder.out_channels[-1], **aux_params ) else: self.classification_head = None self.name = "u-{}".format(encoder_name) self.initialize()