from typing import Optional import torch.nn as nn from ..base import ClassificationHead, SegmentationHead, SegmentationModel from ..encoders import get_encoder from .decoder import DVCADecoder class DVCA(SegmentationModel): def __init__( self, encoder_name: str = "resnet34", encoder_depth: int = 5, encoder_weights: Optional[str] = "imagenet", decoder_channels: int = 256, in_channels: int = 3, classes: int = 1, activation: Optional[str] = None, upsampling: int = 8, aux_params: Optional[dict] = None, siam_encoder: bool = True, fusion_form: str = "concat", **kwargs ): super().__init__() self.siam_encoder = siam_encoder self.encoder = get_encoder( encoder_name, in_channels=in_channels, depth=encoder_depth, weights=encoder_weights, output_stride=8, ) if not self.siam_encoder: self.encoder_non_siam = get_encoder( encoder_name, in_channels=in_channels, depth=encoder_depth, weights=encoder_weights, output_stride=8, ) self.decoder = DVCADecoder( in_channels=self.encoder.out_channels[-1], out_channels=decoder_channels, fusion_form=fusion_form, ) self.segmentation_head = SegmentationHead( in_channels=self.decoder.out_channels, out_channels=classes, activation=activation, kernel_size=1, upsampling=upsampling, ) if aux_params is not None: self.classification_head = ClassificationHead( in_channels=self.encoder.out_channels[-1], **aux_params ) else: self.classification_head = None