# This file was automatically generated by SWIG (http://www.swig.org). # Version 4.0.2 # # Do not make changes to this file unless you know what you are doing--modify # the SWIG interface file instead. from sys import version_info as _swig_python_version_info if _swig_python_version_info < (2, 7, 0): raise RuntimeError("Python 2.7 or later required") # Import the low-level C/C++ module if __package__ or "." in __name__: from . import _OCD else: import _OCD try: import builtins as __builtin__ except ImportError: import __builtin__ def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except __builtin__.Exception: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) def _swig_setattr_nondynamic_instance_variable(set): def set_instance_attr(self, name, value): if name == "thisown": self.this.own(value) elif name == "this": set(self, name, value) elif hasattr(self, name) and isinstance(getattr(type(self), name), property): set(self, name, value) else: raise AttributeError("You cannot add instance attributes to %s" % self) return set_instance_attr def _swig_setattr_nondynamic_class_variable(set): def set_class_attr(cls, name, value): if hasattr(cls, name) and not isinstance(getattr(cls, name), property): set(cls, name, value) else: raise AttributeError("You cannot add class attributes to %s" % cls) return set_class_attr def _swig_add_metaclass(metaclass): """Class decorator for adding a metaclass to a SWIG wrapped class - a slimmed down version of six.add_metaclass""" def wrapper(cls): return metaclass(cls.__name__, cls.__bases__, cls.__dict__.copy()) return wrapper class _SwigNonDynamicMeta(type): """Meta class to enforce nondynamic attributes (no new attributes) for a class""" __setattr__ = _swig_setattr_nondynamic_class_variable(type.__setattr__) import sys as _sys if _sys.byteorder == 'little': _cv_numpy_endianess = '<' else: _cv_numpy_endianess = '>' _cv_numpy_typestr_map = {} _cv_numpy_bla = {} CV_VERSION_MAJOR = _OCD.CV_VERSION_MAJOR CV_VERSION_MINOR = _OCD.CV_VERSION_MINOR CV_VERSION_REVISION = _OCD.CV_VERSION_REVISION CV_VERSION_STATUS = _OCD.CV_VERSION_STATUS CV_VERSION = _OCD.CV_VERSION CV_MAJOR_VERSION = _OCD.CV_MAJOR_VERSION CV_MINOR_VERSION = _OCD.CV_MINOR_VERSION CV_SUBMINOR_VERSION = _OCD.CV_SUBMINOR_VERSION class DataType_bool(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD.DataType_bool_generic_type channels = _OCD.DataType_bool_channels fmt = _OCD.DataType_bool_fmt def __init__(self): _OCD.DataType_bool_swiginit(self, _OCD.new_DataType_bool()) __swig_destroy__ = _OCD.delete_DataType_bool # Register DataType_bool in _OCD: _OCD.DataType_bool_swigregister(DataType_bool) class DataType_uchar(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD.DataType_uchar_generic_type channels = _OCD.DataType_uchar_channels fmt = _OCD.DataType_uchar_fmt def __init__(self): _OCD.DataType_uchar_swiginit(self, _OCD.new_DataType_uchar()) __swig_destroy__ = _OCD.delete_DataType_uchar # Register DataType_uchar in _OCD: _OCD.DataType_uchar_swigregister(DataType_uchar) class DataType_schar(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD.DataType_schar_generic_type channels = _OCD.DataType_schar_channels fmt = _OCD.DataType_schar_fmt def __init__(self): _OCD.DataType_schar_swiginit(self, _OCD.new_DataType_schar()) __swig_destroy__ = _OCD.delete_DataType_schar # Register DataType_schar in _OCD: _OCD.DataType_schar_swigregister(DataType_schar) class DataType_char(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD.DataType_char_generic_type channels = _OCD.DataType_char_channels fmt = _OCD.DataType_char_fmt def __init__(self): _OCD.DataType_char_swiginit(self, _OCD.new_DataType_char()) __swig_destroy__ = _OCD.delete_DataType_char # Register DataType_char in _OCD: _OCD.DataType_char_swigregister(DataType_char) class DataType_ushort(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD.DataType_ushort_generic_type channels = _OCD.DataType_ushort_channels fmt = _OCD.DataType_ushort_fmt def __init__(self): _OCD.DataType_ushort_swiginit(self, _OCD.new_DataType_ushort()) __swig_destroy__ = _OCD.delete_DataType_ushort # Register DataType_ushort in _OCD: _OCD.DataType_ushort_swigregister(DataType_ushort) class DataType_short(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD.DataType_short_generic_type channels = _OCD.DataType_short_channels fmt = _OCD.DataType_short_fmt def __init__(self): _OCD.DataType_short_swiginit(self, _OCD.new_DataType_short()) __swig_destroy__ = _OCD.delete_DataType_short # Register DataType_short in _OCD: _OCD.DataType_short_swigregister(DataType_short) class DataType_int(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD.DataType_int_generic_type channels = _OCD.DataType_int_channels fmt = _OCD.DataType_int_fmt def __init__(self): _OCD.DataType_int_swiginit(self, _OCD.new_DataType_int()) __swig_destroy__ = _OCD.delete_DataType_int # Register DataType_int in _OCD: _OCD.DataType_int_swigregister(DataType_int) class DataType_float(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD.DataType_float_generic_type channels = _OCD.DataType_float_channels fmt = _OCD.DataType_float_fmt def __init__(self): _OCD.DataType_float_swiginit(self, _OCD.new_DataType_float()) __swig_destroy__ = _OCD.delete_DataType_float # Register DataType_float in _OCD: _OCD.DataType_float_swigregister(DataType_float) class DataType_double(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD.DataType_double_generic_type channels = _OCD.DataType_double_channels fmt = _OCD.DataType_double_fmt def __init__(self): _OCD.DataType_double_swiginit(self, _OCD.new_DataType_double()) __swig_destroy__ = _OCD.delete_DataType_double # Register DataType_double in _OCD: _OCD.DataType_double_swigregister(DataType_double) class Range(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, *args): _OCD.Range_swiginit(self, _OCD.new_Range(*args)) def size(self): return _OCD.Range_size(self) def empty(self): return _OCD.Range_empty(self) @staticmethod def all(): return _OCD.Range_all() start = property(_OCD.Range_start_get, _OCD.Range_start_set) end = property(_OCD.Range_end_get, _OCD.Range_end_set) __swig_destroy__ = _OCD.delete_Range # Register Range in _OCD: _OCD.Range_swigregister(Range) def Range_all(): return _OCD.Range_all() class SwigPyIterator(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract") __repr__ = _swig_repr __swig_destroy__ = _OCD.delete_SwigPyIterator def value(self): return _OCD.SwigPyIterator_value(self) def incr(self, n=1): return _OCD.SwigPyIterator_incr(self, n) def decr(self, n=1): return _OCD.SwigPyIterator_decr(self, n) def distance(self, x): return _OCD.SwigPyIterator_distance(self, x) def equal(self, x): return _OCD.SwigPyIterator_equal(self, x) def copy(self): return _OCD.SwigPyIterator_copy(self) def next(self): return _OCD.SwigPyIterator_next(self) def __next__(self): return _OCD.SwigPyIterator___next__(self) def previous(self): return _OCD.SwigPyIterator_previous(self) def advance(self, n): return _OCD.SwigPyIterator_advance(self, n) def __eq__(self, x): return _OCD.SwigPyIterator___eq__(self, x) def __ne__(self, x): return _OCD.SwigPyIterator___ne__(self, x) def __iadd__(self, n): return _OCD.SwigPyIterator___iadd__(self, n) def __isub__(self, n): return _OCD.SwigPyIterator___isub__(self, n) def __add__(self, n): return _OCD.SwigPyIterator___add__(self, n) def __sub__(self, *args): return _OCD.SwigPyIterator___sub__(self, *args) def __iter__(self): return self # Register SwigPyIterator in _OCD: _OCD.SwigPyIterator_swigregister(SwigPyIterator) _array_map = {} class Matx_AddOp(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self): _OCD.Matx_AddOp_swiginit(self, _OCD.new_Matx_AddOp()) __swig_destroy__ = _OCD.delete_Matx_AddOp # Register Matx_AddOp in _OCD: _OCD.Matx_AddOp_swigregister(Matx_AddOp) class Matx_SubOp(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self): _OCD.Matx_SubOp_swiginit(self, _OCD.new_Matx_SubOp()) __swig_destroy__ = _OCD.delete_Matx_SubOp # Register Matx_SubOp in _OCD: _OCD.Matx_SubOp_swigregister(Matx_SubOp) class Matx_ScaleOp(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self): _OCD.Matx_ScaleOp_swiginit(self, _OCD.new_Matx_ScaleOp()) __swig_destroy__ = _OCD.delete_Matx_ScaleOp # Register Matx_ScaleOp in _OCD: _OCD.Matx_ScaleOp_swigregister(Matx_ScaleOp) class Matx_MulOp(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self): _OCD.Matx_MulOp_swiginit(self, _OCD.new_Matx_MulOp()) __swig_destroy__ = _OCD.delete_Matx_MulOp # Register Matx_MulOp in _OCD: _OCD.Matx_MulOp_swigregister(Matx_MulOp) class Matx_DivOp(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self): _OCD.Matx_DivOp_swiginit(self, _OCD.new_Matx_DivOp()) __swig_destroy__ = _OCD.delete_Matx_DivOp # Register Matx_DivOp in _OCD: _OCD.Matx_DivOp_swigregister(Matx_DivOp) class Matx_MatMulOp(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self): _OCD.Matx_MatMulOp_swiginit(self, _OCD.new_Matx_MatMulOp()) __swig_destroy__ = _OCD.delete_Matx_MatMulOp # Register Matx_MatMulOp in _OCD: _OCD.Matx_MatMulOp_swigregister(Matx_MatMulOp) class Matx_TOp(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self): _OCD.Matx_TOp_swiginit(self, _OCD.new_Matx_TOp()) __swig_destroy__ = _OCD.delete_Matx_TOp # Register Matx_TOp in _OCD: _OCD.Matx_TOp_swigregister(Matx_TOp) class Mat(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr __swig_destroy__ = _OCD.delete_Mat def row(self, y): return _OCD.Mat_row(self, y) def col(self, x): return _OCD.Mat_col(self, x) def rowRange(self, *args): return _OCD.Mat_rowRange(self, *args) def colRange(self, *args): return _OCD.Mat_colRange(self, *args) def diag(self, d=0): return _OCD.Mat_diag(self, d) def clone(self): return _OCD.Mat_clone(self) def assignTo(self, m, type=-1): return _OCD.Mat_assignTo(self, m, type) def reshape(self, *args): return _OCD.Mat_reshape(self, *args) def create(self, *args): return _OCD.Mat_create(self, *args) def addref(self): return _OCD.Mat_addref(self) def release(self): return _OCD.Mat_release(self) def deallocate(self): return _OCD.Mat_deallocate(self) def copySize(self, m): return _OCD.Mat_copySize(self, m) def reserve(self, sz): return _OCD.Mat_reserve(self, sz) def resize(self, *args): return _OCD.Mat_resize(self, *args) def push_back_(self, elem): return _OCD.Mat_push_back_(self, elem) def push_back(self, m): return _OCD.Mat_push_back(self, m) def pop_back(self, nelems=1): return _OCD.Mat_pop_back(self, nelems) def locateROI(self, wholeSize, ofs): return _OCD.Mat_locateROI(self, wholeSize, ofs) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD.Mat_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD.Mat___call__(self, *args) def isContinuous(self): return _OCD.Mat_isContinuous(self) def isSubmatrix(self): return _OCD.Mat_isSubmatrix(self) def elemSize(self): return _OCD.Mat_elemSize(self) def elemSize1(self): return _OCD.Mat_elemSize1(self) def type(self): return _OCD.Mat_type(self) def depth(self): return _OCD.Mat_depth(self) def channels(self): return _OCD.Mat_channels(self) def step1(self, i=0): return _OCD.Mat_step1(self, i) def empty(self): return _OCD.Mat_empty(self) def total(self): return _OCD.Mat_total(self) def checkVector(self, elemChannels, depth=-1, requireContinuous=True): return _OCD.Mat_checkVector(self, elemChannels, depth, requireContinuous) def ptr(self, *args): return _OCD.Mat_ptr(self, *args) MAGIC_VAL = _OCD.Mat_MAGIC_VAL AUTO_STEP = _OCD.Mat_AUTO_STEP CONTINUOUS_FLAG = _OCD.Mat_CONTINUOUS_FLAG SUBMATRIX_FLAG = _OCD.Mat_SUBMATRIX_FLAG MAGIC_MASK = _OCD.Mat_MAGIC_MASK TYPE_MASK = _OCD.Mat_TYPE_MASK DEPTH_MASK = _OCD.Mat_DEPTH_MASK flags = property(_OCD.Mat_flags_get, _OCD.Mat_flags_set) dims = property(_OCD.Mat_dims_get, _OCD.Mat_dims_set) rows = property(_OCD.Mat_rows_get, _OCD.Mat_rows_set) cols = property(_OCD.Mat_cols_get, _OCD.Mat_cols_set) data = property(_OCD.Mat_data_get, _OCD.Mat_data_set) datastart = property(_OCD.Mat_datastart_get, _OCD.Mat_datastart_set) dataend = property(_OCD.Mat_dataend_get, _OCD.Mat_dataend_set) datalimit = property(_OCD.Mat_datalimit_get, _OCD.Mat_datalimit_set) def __init__(self, *args): _OCD.Mat_swiginit(self, _OCD.new_Mat(*args)) def _typestr(self): typestr = _depthToDtype(self.depth()) if typestr[-1] == '1': typestr = '|' + typestr else: typestr = _cv_numpy_endianess + typestr return typestr @classmethod def __get_channels(cls, array): if len(array.shape) == 3: n_channel = array.shape[2] if n_channel == 1: raise ValueError("{} expects an one channel numpy ndarray be 2-dimensional.".format(cls)) elif len(array.shape) == 2: n_channel = 1 else: raise ValueError("{} supports only 2 or 3-dimensional numpy ndarray.".format(cls)) return n_channel def __getattribute__(self, name): if name == "__array_interface__": n_channels = self.channels() if n_channels == 1: shape = (self.rows, self.cols) else: shape = (self.rows, self.cols, n_channels) return {"shape": shape, "typestr": self._typestr(), "data": (int(self.data), False)} else: return object.__getattribute__(self, name) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) dtype = array.__array_interface__['typestr'] dtype = dtype[1:] n_channel = cls.__get_channels(array) new_mat = Mat(array.shape[0], array.shape[1], _toCvType(dtype, n_channel), array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD.Mat___str__(self) # Register Mat in _OCD: _OCD.Mat_swigregister(Mat) class _cv_numpy_sizeof_uint8_t(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_uint8_t_value def __init__(self): _OCD._cv_numpy_sizeof_uint8_t_swiginit(self, _OCD.new__cv_numpy_sizeof_uint8_t()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_uint8_t # Register _cv_numpy_sizeof_uint8_t in _OCD: _OCD._cv_numpy_sizeof_uint8_t_swigregister(_cv_numpy_sizeof_uint8_t) if _cv_numpy_sizeof_uint8_t.value == 1: _cv_numpy_typestr_map["uint8_t"] = "|" +"u" + "1" else: _cv_numpy_typestr_map["uint8_t"] = _cv_numpy_endianess +"u" + str(_cv_numpy_sizeof_uint8_t.value) class uint8_tArray(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def iterator(self): return _OCD.uint8_tArray_iterator(self) def __iter__(self): return self.iterator() def __nonzero__(self): return _OCD.uint8_tArray___nonzero__(self) def __bool__(self): return _OCD.uint8_tArray___bool__(self) def __len__(self): return _OCD.uint8_tArray___len__(self) def __getslice__(self, i, j): return _OCD.uint8_tArray___getslice__(self, i, j) def __setslice__(self, *args): return _OCD.uint8_tArray___setslice__(self, *args) def __delslice__(self, i, j): return _OCD.uint8_tArray___delslice__(self, i, j) def __delitem__(self, *args): return _OCD.uint8_tArray___delitem__(self, *args) def __getitem__(self, *args): return _OCD.uint8_tArray___getitem__(self, *args) def __setitem__(self, *args): return _OCD.uint8_tArray___setitem__(self, *args) def pop(self): return _OCD.uint8_tArray_pop(self) def append(self, x): return _OCD.uint8_tArray_append(self, x) def empty(self): return _OCD.uint8_tArray_empty(self) def size(self): return _OCD.uint8_tArray_size(self) def swap(self, v): return _OCD.uint8_tArray_swap(self, v) def begin(self): return _OCD.uint8_tArray_begin(self) def end(self): return _OCD.uint8_tArray_end(self) def rbegin(self): return _OCD.uint8_tArray_rbegin(self) def rend(self): return _OCD.uint8_tArray_rend(self) def clear(self): return _OCD.uint8_tArray_clear(self) def get_allocator(self): return _OCD.uint8_tArray_get_allocator(self) def pop_back(self): return _OCD.uint8_tArray_pop_back(self) def erase(self, *args): return _OCD.uint8_tArray_erase(self, *args) def __init__(self, *args): _OCD.uint8_tArray_swiginit(self, _OCD.new_uint8_tArray(*args)) def push_back(self, x): return _OCD.uint8_tArray_push_back(self, x) def front(self): return _OCD.uint8_tArray_front(self) def back(self): return _OCD.uint8_tArray_back(self) def assign(self, n, x): return _OCD.uint8_tArray_assign(self, n, x) def resize(self, *args): return _OCD.uint8_tArray_resize(self, *args) def insert(self, *args): return _OCD.uint8_tArray_insert(self, *args) def reserve(self, n): return _OCD.uint8_tArray_reserve(self, n) def capacity(self): return _OCD.uint8_tArray_capacity(self) __swig_destroy__ = _OCD.delete_uint8_tArray # Register uint8_tArray in _OCD: _OCD.uint8_tArray_swigregister(uint8_tArray) _array_map["uint8_t"] =uint8_tArray class _Matx_uint8_t_2_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_uint8_t_2_1_rows cols = _OCD._Matx_uint8_t_2_1_cols channels = _OCD._Matx_uint8_t_2_1_channels shortdim = _OCD._Matx_uint8_t_2_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_uint8_t_2_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_uint8_t_2_1_zeros() @staticmethod def ones(): return _OCD._Matx_uint8_t_2_1_ones() @staticmethod def eye(): return _OCD._Matx_uint8_t_2_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_uint8_t_2_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_uint8_t_2_1_randn(a, b) def dot(self, v): return _OCD._Matx_uint8_t_2_1_dot(self, v) def ddot(self, v): return _OCD._Matx_uint8_t_2_1_ddot(self, v) def t(self): return _OCD._Matx_uint8_t_2_1_t(self) def mul(self, a): return _OCD._Matx_uint8_t_2_1_mul(self, a) def div(self, a): return _OCD._Matx_uint8_t_2_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_uint8_t_2_1___call__(self, i, j) val = property(_OCD._Matx_uint8_t_2_1_val_get, _OCD._Matx_uint8_t_2_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_uint8_t_2_1_swiginit(self, _OCD.new__Matx_uint8_t_2_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_uint8_t_2_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_uint8_t_2_1 # Register _Matx_uint8_t_2_1 in _OCD: _OCD._Matx_uint8_t_2_1_swigregister(_Matx_uint8_t_2_1) def _Matx_uint8_t_2_1_all(alpha): return _OCD._Matx_uint8_t_2_1_all(alpha) def _Matx_uint8_t_2_1_zeros(): return _OCD._Matx_uint8_t_2_1_zeros() def _Matx_uint8_t_2_1_ones(): return _OCD._Matx_uint8_t_2_1_ones() def _Matx_uint8_t_2_1_eye(): return _OCD._Matx_uint8_t_2_1_eye() def _Matx_uint8_t_2_1_randu(a, b): return _OCD._Matx_uint8_t_2_1_randu(a, b) def _Matx_uint8_t_2_1_randn(a, b): return _OCD._Matx_uint8_t_2_1_randn(a, b) Matx21b = _Matx_uint8_t_2_1 class _Vec_uint8_t_2(_Matx_uint8_t_2_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_uint8_t_2_channels @staticmethod def all(alpha): return _OCD._Vec_uint8_t_2_all(alpha) def mul(self, v): return _OCD._Vec_uint8_t_2_mul(self, v) def __call__(self, i): return _OCD._Vec_uint8_t_2___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_uint8_t_2_swiginit(self, _OCD.new__Vec_uint8_t_2(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_uint8_t_2___str__(self) __swig_destroy__ = _OCD.delete__Vec_uint8_t_2 # Register _Vec_uint8_t_2 in _OCD: _OCD._Vec_uint8_t_2_swigregister(_Vec_uint8_t_2) def _Vec_uint8_t_2_all(alpha): return _OCD._Vec_uint8_t_2_all(alpha) class _DataType_Vec_uint8_t_2(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_uint8_t_2_generic_type channels = _OCD._DataType_Vec_uint8_t_2_channels fmt = _OCD._DataType_Vec_uint8_t_2_fmt def __init__(self): _OCD._DataType_Vec_uint8_t_2_swiginit(self, _OCD.new__DataType_Vec_uint8_t_2()) __swig_destroy__ = _OCD.delete__DataType_Vec_uint8_t_2 # Register _DataType_Vec_uint8_t_2 in _OCD: _OCD._DataType_Vec_uint8_t_2_swigregister(_DataType_Vec_uint8_t_2) Vec2b = _Vec_uint8_t_2 DataType_Vec2b = _DataType_Vec_uint8_t_2 class _Matx_uint8_t_3_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_uint8_t_3_1_rows cols = _OCD._Matx_uint8_t_3_1_cols channels = _OCD._Matx_uint8_t_3_1_channels shortdim = _OCD._Matx_uint8_t_3_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_uint8_t_3_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_uint8_t_3_1_zeros() @staticmethod def ones(): return _OCD._Matx_uint8_t_3_1_ones() @staticmethod def eye(): return _OCD._Matx_uint8_t_3_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_uint8_t_3_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_uint8_t_3_1_randn(a, b) def dot(self, v): return _OCD._Matx_uint8_t_3_1_dot(self, v) def ddot(self, v): return _OCD._Matx_uint8_t_3_1_ddot(self, v) def t(self): return _OCD._Matx_uint8_t_3_1_t(self) def mul(self, a): return _OCD._Matx_uint8_t_3_1_mul(self, a) def div(self, a): return _OCD._Matx_uint8_t_3_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_uint8_t_3_1___call__(self, i, j) val = property(_OCD._Matx_uint8_t_3_1_val_get, _OCD._Matx_uint8_t_3_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_uint8_t_3_1_swiginit(self, _OCD.new__Matx_uint8_t_3_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_uint8_t_3_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_uint8_t_3_1 # Register _Matx_uint8_t_3_1 in _OCD: _OCD._Matx_uint8_t_3_1_swigregister(_Matx_uint8_t_3_1) def _Matx_uint8_t_3_1_all(alpha): return _OCD._Matx_uint8_t_3_1_all(alpha) def _Matx_uint8_t_3_1_zeros(): return _OCD._Matx_uint8_t_3_1_zeros() def _Matx_uint8_t_3_1_ones(): return _OCD._Matx_uint8_t_3_1_ones() def _Matx_uint8_t_3_1_eye(): return _OCD._Matx_uint8_t_3_1_eye() def _Matx_uint8_t_3_1_randu(a, b): return _OCD._Matx_uint8_t_3_1_randu(a, b) def _Matx_uint8_t_3_1_randn(a, b): return _OCD._Matx_uint8_t_3_1_randn(a, b) Matx31b = _Matx_uint8_t_3_1 class _Vec_uint8_t_3(_Matx_uint8_t_3_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_uint8_t_3_channels @staticmethod def all(alpha): return _OCD._Vec_uint8_t_3_all(alpha) def mul(self, v): return _OCD._Vec_uint8_t_3_mul(self, v) def __call__(self, i): return _OCD._Vec_uint8_t_3___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_uint8_t_3_swiginit(self, _OCD.new__Vec_uint8_t_3(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_uint8_t_3___str__(self) __swig_destroy__ = _OCD.delete__Vec_uint8_t_3 # Register _Vec_uint8_t_3 in _OCD: _OCD._Vec_uint8_t_3_swigregister(_Vec_uint8_t_3) def _Vec_uint8_t_3_all(alpha): return _OCD._Vec_uint8_t_3_all(alpha) class _DataType_Vec_uint8_t_3(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_uint8_t_3_generic_type channels = _OCD._DataType_Vec_uint8_t_3_channels fmt = _OCD._DataType_Vec_uint8_t_3_fmt def __init__(self): _OCD._DataType_Vec_uint8_t_3_swiginit(self, _OCD.new__DataType_Vec_uint8_t_3()) __swig_destroy__ = _OCD.delete__DataType_Vec_uint8_t_3 # Register _DataType_Vec_uint8_t_3 in _OCD: _OCD._DataType_Vec_uint8_t_3_swigregister(_DataType_Vec_uint8_t_3) Vec3b = _Vec_uint8_t_3 DataType_Vec3b = _DataType_Vec_uint8_t_3 class _Matx_uint8_t_4_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_uint8_t_4_1_rows cols = _OCD._Matx_uint8_t_4_1_cols channels = _OCD._Matx_uint8_t_4_1_channels shortdim = _OCD._Matx_uint8_t_4_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_uint8_t_4_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_uint8_t_4_1_zeros() @staticmethod def ones(): return _OCD._Matx_uint8_t_4_1_ones() @staticmethod def eye(): return _OCD._Matx_uint8_t_4_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_uint8_t_4_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_uint8_t_4_1_randn(a, b) def dot(self, v): return _OCD._Matx_uint8_t_4_1_dot(self, v) def ddot(self, v): return _OCD._Matx_uint8_t_4_1_ddot(self, v) def t(self): return _OCD._Matx_uint8_t_4_1_t(self) def mul(self, a): return _OCD._Matx_uint8_t_4_1_mul(self, a) def div(self, a): return _OCD._Matx_uint8_t_4_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_uint8_t_4_1___call__(self, i, j) val = property(_OCD._Matx_uint8_t_4_1_val_get, _OCD._Matx_uint8_t_4_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_uint8_t_4_1_swiginit(self, _OCD.new__Matx_uint8_t_4_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_uint8_t_4_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_uint8_t_4_1 # Register _Matx_uint8_t_4_1 in _OCD: _OCD._Matx_uint8_t_4_1_swigregister(_Matx_uint8_t_4_1) def _Matx_uint8_t_4_1_all(alpha): return _OCD._Matx_uint8_t_4_1_all(alpha) def _Matx_uint8_t_4_1_zeros(): return _OCD._Matx_uint8_t_4_1_zeros() def _Matx_uint8_t_4_1_ones(): return _OCD._Matx_uint8_t_4_1_ones() def _Matx_uint8_t_4_1_eye(): return _OCD._Matx_uint8_t_4_1_eye() def _Matx_uint8_t_4_1_randu(a, b): return _OCD._Matx_uint8_t_4_1_randu(a, b) def _Matx_uint8_t_4_1_randn(a, b): return _OCD._Matx_uint8_t_4_1_randn(a, b) Matx41b = _Matx_uint8_t_4_1 class _Vec_uint8_t_4(_Matx_uint8_t_4_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_uint8_t_4_channels @staticmethod def all(alpha): return _OCD._Vec_uint8_t_4_all(alpha) def mul(self, v): return _OCD._Vec_uint8_t_4_mul(self, v) def __call__(self, i): return _OCD._Vec_uint8_t_4___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_uint8_t_4_swiginit(self, _OCD.new__Vec_uint8_t_4(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_uint8_t_4___str__(self) __swig_destroy__ = _OCD.delete__Vec_uint8_t_4 # Register _Vec_uint8_t_4 in _OCD: _OCD._Vec_uint8_t_4_swigregister(_Vec_uint8_t_4) def _Vec_uint8_t_4_all(alpha): return _OCD._Vec_uint8_t_4_all(alpha) class _DataType_Vec_uint8_t_4(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_uint8_t_4_generic_type channels = _OCD._DataType_Vec_uint8_t_4_channels fmt = _OCD._DataType_Vec_uint8_t_4_fmt def __init__(self): _OCD._DataType_Vec_uint8_t_4_swiginit(self, _OCD.new__DataType_Vec_uint8_t_4()) __swig_destroy__ = _OCD.delete__DataType_Vec_uint8_t_4 # Register _DataType_Vec_uint8_t_4 in _OCD: _OCD._DataType_Vec_uint8_t_4_swigregister(_DataType_Vec_uint8_t_4) Vec4b = _Vec_uint8_t_4 DataType_Vec4b = _DataType_Vec_uint8_t_4 class _cv_numpy_sizeof_short(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_short_value def __init__(self): _OCD._cv_numpy_sizeof_short_swiginit(self, _OCD.new__cv_numpy_sizeof_short()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_short # Register _cv_numpy_sizeof_short in _OCD: _OCD._cv_numpy_sizeof_short_swigregister(_cv_numpy_sizeof_short) if _cv_numpy_sizeof_short.value == 1: _cv_numpy_typestr_map["short"] = "|" +"i" + "1" else: _cv_numpy_typestr_map["short"] = _cv_numpy_endianess +"i" + str(_cv_numpy_sizeof_short.value) class shortArray(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def iterator(self): return _OCD.shortArray_iterator(self) def __iter__(self): return self.iterator() def __nonzero__(self): return _OCD.shortArray___nonzero__(self) def __bool__(self): return _OCD.shortArray___bool__(self) def __len__(self): return _OCD.shortArray___len__(self) def __getslice__(self, i, j): return _OCD.shortArray___getslice__(self, i, j) def __setslice__(self, *args): return _OCD.shortArray___setslice__(self, *args) def __delslice__(self, i, j): return _OCD.shortArray___delslice__(self, i, j) def __delitem__(self, *args): return _OCD.shortArray___delitem__(self, *args) def __getitem__(self, *args): return _OCD.shortArray___getitem__(self, *args) def __setitem__(self, *args): return _OCD.shortArray___setitem__(self, *args) def pop(self): return _OCD.shortArray_pop(self) def append(self, x): return _OCD.shortArray_append(self, x) def empty(self): return _OCD.shortArray_empty(self) def size(self): return _OCD.shortArray_size(self) def swap(self, v): return _OCD.shortArray_swap(self, v) def begin(self): return _OCD.shortArray_begin(self) def end(self): return _OCD.shortArray_end(self) def rbegin(self): return _OCD.shortArray_rbegin(self) def rend(self): return _OCD.shortArray_rend(self) def clear(self): return _OCD.shortArray_clear(self) def get_allocator(self): return _OCD.shortArray_get_allocator(self) def pop_back(self): return _OCD.shortArray_pop_back(self) def erase(self, *args): return _OCD.shortArray_erase(self, *args) def __init__(self, *args): _OCD.shortArray_swiginit(self, _OCD.new_shortArray(*args)) def push_back(self, x): return _OCD.shortArray_push_back(self, x) def front(self): return _OCD.shortArray_front(self) def back(self): return _OCD.shortArray_back(self) def assign(self, n, x): return _OCD.shortArray_assign(self, n, x) def resize(self, *args): return _OCD.shortArray_resize(self, *args) def insert(self, *args): return _OCD.shortArray_insert(self, *args) def reserve(self, n): return _OCD.shortArray_reserve(self, n) def capacity(self): return _OCD.shortArray_capacity(self) __swig_destroy__ = _OCD.delete_shortArray # Register shortArray in _OCD: _OCD.shortArray_swigregister(shortArray) _array_map["short"] =shortArray class _Matx_short_2_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_short_2_1_rows cols = _OCD._Matx_short_2_1_cols channels = _OCD._Matx_short_2_1_channels shortdim = _OCD._Matx_short_2_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_short_2_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_short_2_1_zeros() @staticmethod def ones(): return _OCD._Matx_short_2_1_ones() @staticmethod def eye(): return _OCD._Matx_short_2_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_short_2_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_short_2_1_randn(a, b) def dot(self, v): return _OCD._Matx_short_2_1_dot(self, v) def ddot(self, v): return _OCD._Matx_short_2_1_ddot(self, v) def t(self): return _OCD._Matx_short_2_1_t(self) def mul(self, a): return _OCD._Matx_short_2_1_mul(self, a) def div(self, a): return _OCD._Matx_short_2_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_short_2_1___call__(self, i, j) val = property(_OCD._Matx_short_2_1_val_get, _OCD._Matx_short_2_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_short_2_1_swiginit(self, _OCD.new__Matx_short_2_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_short_2_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_short_2_1 # Register _Matx_short_2_1 in _OCD: _OCD._Matx_short_2_1_swigregister(_Matx_short_2_1) def _Matx_short_2_1_all(alpha): return _OCD._Matx_short_2_1_all(alpha) def _Matx_short_2_1_zeros(): return _OCD._Matx_short_2_1_zeros() def _Matx_short_2_1_ones(): return _OCD._Matx_short_2_1_ones() def _Matx_short_2_1_eye(): return _OCD._Matx_short_2_1_eye() def _Matx_short_2_1_randu(a, b): return _OCD._Matx_short_2_1_randu(a, b) def _Matx_short_2_1_randn(a, b): return _OCD._Matx_short_2_1_randn(a, b) Matx21s = _Matx_short_2_1 class _Vec_short_2(_Matx_short_2_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_short_2_channels @staticmethod def all(alpha): return _OCD._Vec_short_2_all(alpha) def mul(self, v): return _OCD._Vec_short_2_mul(self, v) def __call__(self, i): return _OCD._Vec_short_2___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_short_2_swiginit(self, _OCD.new__Vec_short_2(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_short_2___str__(self) __swig_destroy__ = _OCD.delete__Vec_short_2 # Register _Vec_short_2 in _OCD: _OCD._Vec_short_2_swigregister(_Vec_short_2) def _Vec_short_2_all(alpha): return _OCD._Vec_short_2_all(alpha) class _DataType_Vec_short_2(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_short_2_generic_type channels = _OCD._DataType_Vec_short_2_channels fmt = _OCD._DataType_Vec_short_2_fmt def __init__(self): _OCD._DataType_Vec_short_2_swiginit(self, _OCD.new__DataType_Vec_short_2()) __swig_destroy__ = _OCD.delete__DataType_Vec_short_2 # Register _DataType_Vec_short_2 in _OCD: _OCD._DataType_Vec_short_2_swigregister(_DataType_Vec_short_2) Vec2s = _Vec_short_2 DataType_Vec2s = _DataType_Vec_short_2 class _Matx_short_3_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_short_3_1_rows cols = _OCD._Matx_short_3_1_cols channels = _OCD._Matx_short_3_1_channels shortdim = _OCD._Matx_short_3_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_short_3_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_short_3_1_zeros() @staticmethod def ones(): return _OCD._Matx_short_3_1_ones() @staticmethod def eye(): return _OCD._Matx_short_3_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_short_3_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_short_3_1_randn(a, b) def dot(self, v): return _OCD._Matx_short_3_1_dot(self, v) def ddot(self, v): return _OCD._Matx_short_3_1_ddot(self, v) def t(self): return _OCD._Matx_short_3_1_t(self) def mul(self, a): return _OCD._Matx_short_3_1_mul(self, a) def div(self, a): return _OCD._Matx_short_3_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_short_3_1___call__(self, i, j) val = property(_OCD._Matx_short_3_1_val_get, _OCD._Matx_short_3_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_short_3_1_swiginit(self, _OCD.new__Matx_short_3_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_short_3_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_short_3_1 # Register _Matx_short_3_1 in _OCD: _OCD._Matx_short_3_1_swigregister(_Matx_short_3_1) def _Matx_short_3_1_all(alpha): return _OCD._Matx_short_3_1_all(alpha) def _Matx_short_3_1_zeros(): return _OCD._Matx_short_3_1_zeros() def _Matx_short_3_1_ones(): return _OCD._Matx_short_3_1_ones() def _Matx_short_3_1_eye(): return _OCD._Matx_short_3_1_eye() def _Matx_short_3_1_randu(a, b): return _OCD._Matx_short_3_1_randu(a, b) def _Matx_short_3_1_randn(a, b): return _OCD._Matx_short_3_1_randn(a, b) Matx31s = _Matx_short_3_1 class _Vec_short_3(_Matx_short_3_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_short_3_channels @staticmethod def all(alpha): return _OCD._Vec_short_3_all(alpha) def mul(self, v): return _OCD._Vec_short_3_mul(self, v) def __call__(self, i): return _OCD._Vec_short_3___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_short_3_swiginit(self, _OCD.new__Vec_short_3(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_short_3___str__(self) __swig_destroy__ = _OCD.delete__Vec_short_3 # Register _Vec_short_3 in _OCD: _OCD._Vec_short_3_swigregister(_Vec_short_3) def _Vec_short_3_all(alpha): return _OCD._Vec_short_3_all(alpha) class _DataType_Vec_short_3(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_short_3_generic_type channels = _OCD._DataType_Vec_short_3_channels fmt = _OCD._DataType_Vec_short_3_fmt def __init__(self): _OCD._DataType_Vec_short_3_swiginit(self, _OCD.new__DataType_Vec_short_3()) __swig_destroy__ = _OCD.delete__DataType_Vec_short_3 # Register _DataType_Vec_short_3 in _OCD: _OCD._DataType_Vec_short_3_swigregister(_DataType_Vec_short_3) Vec3s = _Vec_short_3 DataType_Vec3s = _DataType_Vec_short_3 class _Matx_short_4_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_short_4_1_rows cols = _OCD._Matx_short_4_1_cols channels = _OCD._Matx_short_4_1_channels shortdim = _OCD._Matx_short_4_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_short_4_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_short_4_1_zeros() @staticmethod def ones(): return _OCD._Matx_short_4_1_ones() @staticmethod def eye(): return _OCD._Matx_short_4_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_short_4_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_short_4_1_randn(a, b) def dot(self, v): return _OCD._Matx_short_4_1_dot(self, v) def ddot(self, v): return _OCD._Matx_short_4_1_ddot(self, v) def t(self): return _OCD._Matx_short_4_1_t(self) def mul(self, a): return _OCD._Matx_short_4_1_mul(self, a) def div(self, a): return _OCD._Matx_short_4_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_short_4_1___call__(self, i, j) val = property(_OCD._Matx_short_4_1_val_get, _OCD._Matx_short_4_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_short_4_1_swiginit(self, _OCD.new__Matx_short_4_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_short_4_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_short_4_1 # Register _Matx_short_4_1 in _OCD: _OCD._Matx_short_4_1_swigregister(_Matx_short_4_1) def _Matx_short_4_1_all(alpha): return _OCD._Matx_short_4_1_all(alpha) def _Matx_short_4_1_zeros(): return _OCD._Matx_short_4_1_zeros() def _Matx_short_4_1_ones(): return _OCD._Matx_short_4_1_ones() def _Matx_short_4_1_eye(): return _OCD._Matx_short_4_1_eye() def _Matx_short_4_1_randu(a, b): return _OCD._Matx_short_4_1_randu(a, b) def _Matx_short_4_1_randn(a, b): return _OCD._Matx_short_4_1_randn(a, b) Matx41s = _Matx_short_4_1 class _Vec_short_4(_Matx_short_4_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_short_4_channels @staticmethod def all(alpha): return _OCD._Vec_short_4_all(alpha) def mul(self, v): return _OCD._Vec_short_4_mul(self, v) def __call__(self, i): return _OCD._Vec_short_4___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_short_4_swiginit(self, _OCD.new__Vec_short_4(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_short_4___str__(self) __swig_destroy__ = _OCD.delete__Vec_short_4 # Register _Vec_short_4 in _OCD: _OCD._Vec_short_4_swigregister(_Vec_short_4) def _Vec_short_4_all(alpha): return _OCD._Vec_short_4_all(alpha) class _DataType_Vec_short_4(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_short_4_generic_type channels = _OCD._DataType_Vec_short_4_channels fmt = _OCD._DataType_Vec_short_4_fmt def __init__(self): _OCD._DataType_Vec_short_4_swiginit(self, _OCD.new__DataType_Vec_short_4()) __swig_destroy__ = _OCD.delete__DataType_Vec_short_4 # Register _DataType_Vec_short_4 in _OCD: _OCD._DataType_Vec_short_4_swigregister(_DataType_Vec_short_4) Vec4s = _Vec_short_4 DataType_Vec4s = _DataType_Vec_short_4 class _cv_numpy_sizeof_ushort(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_ushort_value def __init__(self): _OCD._cv_numpy_sizeof_ushort_swiginit(self, _OCD.new__cv_numpy_sizeof_ushort()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_ushort # Register _cv_numpy_sizeof_ushort in _OCD: _OCD._cv_numpy_sizeof_ushort_swigregister(_cv_numpy_sizeof_ushort) if _cv_numpy_sizeof_ushort.value == 1: _cv_numpy_typestr_map["ushort"] = "|" +"u" + "1" else: _cv_numpy_typestr_map["ushort"] = _cv_numpy_endianess +"u" + str(_cv_numpy_sizeof_ushort.value) class ushortArray(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def iterator(self): return _OCD.ushortArray_iterator(self) def __iter__(self): return self.iterator() def __nonzero__(self): return _OCD.ushortArray___nonzero__(self) def __bool__(self): return _OCD.ushortArray___bool__(self) def __len__(self): return _OCD.ushortArray___len__(self) def __getslice__(self, i, j): return _OCD.ushortArray___getslice__(self, i, j) def __setslice__(self, *args): return _OCD.ushortArray___setslice__(self, *args) def __delslice__(self, i, j): return _OCD.ushortArray___delslice__(self, i, j) def __delitem__(self, *args): return _OCD.ushortArray___delitem__(self, *args) def __getitem__(self, *args): return _OCD.ushortArray___getitem__(self, *args) def __setitem__(self, *args): return _OCD.ushortArray___setitem__(self, *args) def pop(self): return _OCD.ushortArray_pop(self) def append(self, x): return _OCD.ushortArray_append(self, x) def empty(self): return _OCD.ushortArray_empty(self) def size(self): return _OCD.ushortArray_size(self) def swap(self, v): return _OCD.ushortArray_swap(self, v) def begin(self): return _OCD.ushortArray_begin(self) def end(self): return _OCD.ushortArray_end(self) def rbegin(self): return _OCD.ushortArray_rbegin(self) def rend(self): return _OCD.ushortArray_rend(self) def clear(self): return _OCD.ushortArray_clear(self) def get_allocator(self): return _OCD.ushortArray_get_allocator(self) def pop_back(self): return _OCD.ushortArray_pop_back(self) def erase(self, *args): return _OCD.ushortArray_erase(self, *args) def __init__(self, *args): _OCD.ushortArray_swiginit(self, _OCD.new_ushortArray(*args)) def push_back(self, x): return _OCD.ushortArray_push_back(self, x) def front(self): return _OCD.ushortArray_front(self) def back(self): return _OCD.ushortArray_back(self) def assign(self, n, x): return _OCD.ushortArray_assign(self, n, x) def resize(self, *args): return _OCD.ushortArray_resize(self, *args) def insert(self, *args): return _OCD.ushortArray_insert(self, *args) def reserve(self, n): return _OCD.ushortArray_reserve(self, n) def capacity(self): return _OCD.ushortArray_capacity(self) __swig_destroy__ = _OCD.delete_ushortArray # Register ushortArray in _OCD: _OCD.ushortArray_swigregister(ushortArray) _array_map["ushort"] =ushortArray class _Matx_ushort_2_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_ushort_2_1_rows cols = _OCD._Matx_ushort_2_1_cols channels = _OCD._Matx_ushort_2_1_channels shortdim = _OCD._Matx_ushort_2_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_ushort_2_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_ushort_2_1_zeros() @staticmethod def ones(): return _OCD._Matx_ushort_2_1_ones() @staticmethod def eye(): return _OCD._Matx_ushort_2_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_ushort_2_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_ushort_2_1_randn(a, b) def dot(self, v): return _OCD._Matx_ushort_2_1_dot(self, v) def ddot(self, v): return _OCD._Matx_ushort_2_1_ddot(self, v) def t(self): return _OCD._Matx_ushort_2_1_t(self) def mul(self, a): return _OCD._Matx_ushort_2_1_mul(self, a) def div(self, a): return _OCD._Matx_ushort_2_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_ushort_2_1___call__(self, i, j) val = property(_OCD._Matx_ushort_2_1_val_get, _OCD._Matx_ushort_2_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_ushort_2_1_swiginit(self, _OCD.new__Matx_ushort_2_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_ushort_2_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_ushort_2_1 # Register _Matx_ushort_2_1 in _OCD: _OCD._Matx_ushort_2_1_swigregister(_Matx_ushort_2_1) def _Matx_ushort_2_1_all(alpha): return _OCD._Matx_ushort_2_1_all(alpha) def _Matx_ushort_2_1_zeros(): return _OCD._Matx_ushort_2_1_zeros() def _Matx_ushort_2_1_ones(): return _OCD._Matx_ushort_2_1_ones() def _Matx_ushort_2_1_eye(): return _OCD._Matx_ushort_2_1_eye() def _Matx_ushort_2_1_randu(a, b): return _OCD._Matx_ushort_2_1_randu(a, b) def _Matx_ushort_2_1_randn(a, b): return _OCD._Matx_ushort_2_1_randn(a, b) Matx21w = _Matx_ushort_2_1 class _Vec_ushort_2(_Matx_ushort_2_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_ushort_2_channels @staticmethod def all(alpha): return _OCD._Vec_ushort_2_all(alpha) def mul(self, v): return _OCD._Vec_ushort_2_mul(self, v) def __call__(self, i): return _OCD._Vec_ushort_2___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_ushort_2_swiginit(self, _OCD.new__Vec_ushort_2(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_ushort_2___str__(self) __swig_destroy__ = _OCD.delete__Vec_ushort_2 # Register _Vec_ushort_2 in _OCD: _OCD._Vec_ushort_2_swigregister(_Vec_ushort_2) def _Vec_ushort_2_all(alpha): return _OCD._Vec_ushort_2_all(alpha) class _DataType_Vec_ushort_2(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_ushort_2_generic_type channels = _OCD._DataType_Vec_ushort_2_channels fmt = _OCD._DataType_Vec_ushort_2_fmt def __init__(self): _OCD._DataType_Vec_ushort_2_swiginit(self, _OCD.new__DataType_Vec_ushort_2()) __swig_destroy__ = _OCD.delete__DataType_Vec_ushort_2 # Register _DataType_Vec_ushort_2 in _OCD: _OCD._DataType_Vec_ushort_2_swigregister(_DataType_Vec_ushort_2) Vec2w = _Vec_ushort_2 DataType_Vec2w = _DataType_Vec_ushort_2 class _Matx_ushort_3_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_ushort_3_1_rows cols = _OCD._Matx_ushort_3_1_cols channels = _OCD._Matx_ushort_3_1_channels shortdim = _OCD._Matx_ushort_3_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_ushort_3_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_ushort_3_1_zeros() @staticmethod def ones(): return _OCD._Matx_ushort_3_1_ones() @staticmethod def eye(): return _OCD._Matx_ushort_3_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_ushort_3_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_ushort_3_1_randn(a, b) def dot(self, v): return _OCD._Matx_ushort_3_1_dot(self, v) def ddot(self, v): return _OCD._Matx_ushort_3_1_ddot(self, v) def t(self): return _OCD._Matx_ushort_3_1_t(self) def mul(self, a): return _OCD._Matx_ushort_3_1_mul(self, a) def div(self, a): return _OCD._Matx_ushort_3_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_ushort_3_1___call__(self, i, j) val = property(_OCD._Matx_ushort_3_1_val_get, _OCD._Matx_ushort_3_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_ushort_3_1_swiginit(self, _OCD.new__Matx_ushort_3_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_ushort_3_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_ushort_3_1 # Register _Matx_ushort_3_1 in _OCD: _OCD._Matx_ushort_3_1_swigregister(_Matx_ushort_3_1) def _Matx_ushort_3_1_all(alpha): return _OCD._Matx_ushort_3_1_all(alpha) def _Matx_ushort_3_1_zeros(): return _OCD._Matx_ushort_3_1_zeros() def _Matx_ushort_3_1_ones(): return _OCD._Matx_ushort_3_1_ones() def _Matx_ushort_3_1_eye(): return _OCD._Matx_ushort_3_1_eye() def _Matx_ushort_3_1_randu(a, b): return _OCD._Matx_ushort_3_1_randu(a, b) def _Matx_ushort_3_1_randn(a, b): return _OCD._Matx_ushort_3_1_randn(a, b) Matx31w = _Matx_ushort_3_1 class _Vec_ushort_3(_Matx_ushort_3_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_ushort_3_channels @staticmethod def all(alpha): return _OCD._Vec_ushort_3_all(alpha) def mul(self, v): return _OCD._Vec_ushort_3_mul(self, v) def __call__(self, i): return _OCD._Vec_ushort_3___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_ushort_3_swiginit(self, _OCD.new__Vec_ushort_3(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_ushort_3___str__(self) __swig_destroy__ = _OCD.delete__Vec_ushort_3 # Register _Vec_ushort_3 in _OCD: _OCD._Vec_ushort_3_swigregister(_Vec_ushort_3) def _Vec_ushort_3_all(alpha): return _OCD._Vec_ushort_3_all(alpha) class _DataType_Vec_ushort_3(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_ushort_3_generic_type channels = _OCD._DataType_Vec_ushort_3_channels fmt = _OCD._DataType_Vec_ushort_3_fmt def __init__(self): _OCD._DataType_Vec_ushort_3_swiginit(self, _OCD.new__DataType_Vec_ushort_3()) __swig_destroy__ = _OCD.delete__DataType_Vec_ushort_3 # Register _DataType_Vec_ushort_3 in _OCD: _OCD._DataType_Vec_ushort_3_swigregister(_DataType_Vec_ushort_3) Vec3w = _Vec_ushort_3 DataType_Vec3w = _DataType_Vec_ushort_3 class _Matx_ushort_4_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_ushort_4_1_rows cols = _OCD._Matx_ushort_4_1_cols channels = _OCD._Matx_ushort_4_1_channels shortdim = _OCD._Matx_ushort_4_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_ushort_4_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_ushort_4_1_zeros() @staticmethod def ones(): return _OCD._Matx_ushort_4_1_ones() @staticmethod def eye(): return _OCD._Matx_ushort_4_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_ushort_4_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_ushort_4_1_randn(a, b) def dot(self, v): return _OCD._Matx_ushort_4_1_dot(self, v) def ddot(self, v): return _OCD._Matx_ushort_4_1_ddot(self, v) def t(self): return _OCD._Matx_ushort_4_1_t(self) def mul(self, a): return _OCD._Matx_ushort_4_1_mul(self, a) def div(self, a): return _OCD._Matx_ushort_4_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_ushort_4_1___call__(self, i, j) val = property(_OCD._Matx_ushort_4_1_val_get, _OCD._Matx_ushort_4_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_ushort_4_1_swiginit(self, _OCD.new__Matx_ushort_4_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_ushort_4_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_ushort_4_1 # Register _Matx_ushort_4_1 in _OCD: _OCD._Matx_ushort_4_1_swigregister(_Matx_ushort_4_1) def _Matx_ushort_4_1_all(alpha): return _OCD._Matx_ushort_4_1_all(alpha) def _Matx_ushort_4_1_zeros(): return _OCD._Matx_ushort_4_1_zeros() def _Matx_ushort_4_1_ones(): return _OCD._Matx_ushort_4_1_ones() def _Matx_ushort_4_1_eye(): return _OCD._Matx_ushort_4_1_eye() def _Matx_ushort_4_1_randu(a, b): return _OCD._Matx_ushort_4_1_randu(a, b) def _Matx_ushort_4_1_randn(a, b): return _OCD._Matx_ushort_4_1_randn(a, b) Matx41w = _Matx_ushort_4_1 class _Vec_ushort_4(_Matx_ushort_4_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_ushort_4_channels @staticmethod def all(alpha): return _OCD._Vec_ushort_4_all(alpha) def mul(self, v): return _OCD._Vec_ushort_4_mul(self, v) def __call__(self, i): return _OCD._Vec_ushort_4___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_ushort_4_swiginit(self, _OCD.new__Vec_ushort_4(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_ushort_4___str__(self) __swig_destroy__ = _OCD.delete__Vec_ushort_4 # Register _Vec_ushort_4 in _OCD: _OCD._Vec_ushort_4_swigregister(_Vec_ushort_4) def _Vec_ushort_4_all(alpha): return _OCD._Vec_ushort_4_all(alpha) class _DataType_Vec_ushort_4(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_ushort_4_generic_type channels = _OCD._DataType_Vec_ushort_4_channels fmt = _OCD._DataType_Vec_ushort_4_fmt def __init__(self): _OCD._DataType_Vec_ushort_4_swiginit(self, _OCD.new__DataType_Vec_ushort_4()) __swig_destroy__ = _OCD.delete__DataType_Vec_ushort_4 # Register _DataType_Vec_ushort_4 in _OCD: _OCD._DataType_Vec_ushort_4_swigregister(_DataType_Vec_ushort_4) Vec4w = _Vec_ushort_4 DataType_Vec4w = _DataType_Vec_ushort_4 class _cv_numpy_sizeof_int(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_int_value def __init__(self): _OCD._cv_numpy_sizeof_int_swiginit(self, _OCD.new__cv_numpy_sizeof_int()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_int # Register _cv_numpy_sizeof_int in _OCD: _OCD._cv_numpy_sizeof_int_swigregister(_cv_numpy_sizeof_int) if _cv_numpy_sizeof_int.value == 1: _cv_numpy_typestr_map["int"] = "|" +"i" + "1" else: _cv_numpy_typestr_map["int"] = _cv_numpy_endianess +"i" + str(_cv_numpy_sizeof_int.value) class intArray(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def iterator(self): return _OCD.intArray_iterator(self) def __iter__(self): return self.iterator() def __nonzero__(self): return _OCD.intArray___nonzero__(self) def __bool__(self): return _OCD.intArray___bool__(self) def __len__(self): return _OCD.intArray___len__(self) def __getslice__(self, i, j): return _OCD.intArray___getslice__(self, i, j) def __setslice__(self, *args): return _OCD.intArray___setslice__(self, *args) def __delslice__(self, i, j): return _OCD.intArray___delslice__(self, i, j) def __delitem__(self, *args): return _OCD.intArray___delitem__(self, *args) def __getitem__(self, *args): return _OCD.intArray___getitem__(self, *args) def __setitem__(self, *args): return _OCD.intArray___setitem__(self, *args) def pop(self): return _OCD.intArray_pop(self) def append(self, x): return _OCD.intArray_append(self, x) def empty(self): return _OCD.intArray_empty(self) def size(self): return _OCD.intArray_size(self) def swap(self, v): return _OCD.intArray_swap(self, v) def begin(self): return _OCD.intArray_begin(self) def end(self): return _OCD.intArray_end(self) def rbegin(self): return _OCD.intArray_rbegin(self) def rend(self): return _OCD.intArray_rend(self) def clear(self): return _OCD.intArray_clear(self) def get_allocator(self): return _OCD.intArray_get_allocator(self) def pop_back(self): return _OCD.intArray_pop_back(self) def erase(self, *args): return _OCD.intArray_erase(self, *args) def __init__(self, *args): _OCD.intArray_swiginit(self, _OCD.new_intArray(*args)) def push_back(self, x): return _OCD.intArray_push_back(self, x) def front(self): return _OCD.intArray_front(self) def back(self): return _OCD.intArray_back(self) def assign(self, n, x): return _OCD.intArray_assign(self, n, x) def resize(self, *args): return _OCD.intArray_resize(self, *args) def insert(self, *args): return _OCD.intArray_insert(self, *args) def reserve(self, n): return _OCD.intArray_reserve(self, n) def capacity(self): return _OCD.intArray_capacity(self) __swig_destroy__ = _OCD.delete_intArray # Register intArray in _OCD: _OCD.intArray_swigregister(intArray) _array_map["int"] =intArray class _Matx_int_2_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_int_2_1_rows cols = _OCD._Matx_int_2_1_cols channels = _OCD._Matx_int_2_1_channels shortdim = _OCD._Matx_int_2_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_int_2_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_int_2_1_zeros() @staticmethod def ones(): return _OCD._Matx_int_2_1_ones() @staticmethod def eye(): return _OCD._Matx_int_2_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_int_2_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_int_2_1_randn(a, b) def dot(self, v): return _OCD._Matx_int_2_1_dot(self, v) def ddot(self, v): return _OCD._Matx_int_2_1_ddot(self, v) def t(self): return _OCD._Matx_int_2_1_t(self) def mul(self, a): return _OCD._Matx_int_2_1_mul(self, a) def div(self, a): return _OCD._Matx_int_2_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_int_2_1___call__(self, i, j) val = property(_OCD._Matx_int_2_1_val_get, _OCD._Matx_int_2_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_int_2_1_swiginit(self, _OCD.new__Matx_int_2_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_int_2_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_int_2_1 # Register _Matx_int_2_1 in _OCD: _OCD._Matx_int_2_1_swigregister(_Matx_int_2_1) def _Matx_int_2_1_all(alpha): return _OCD._Matx_int_2_1_all(alpha) def _Matx_int_2_1_zeros(): return _OCD._Matx_int_2_1_zeros() def _Matx_int_2_1_ones(): return _OCD._Matx_int_2_1_ones() def _Matx_int_2_1_eye(): return _OCD._Matx_int_2_1_eye() def _Matx_int_2_1_randu(a, b): return _OCD._Matx_int_2_1_randu(a, b) def _Matx_int_2_1_randn(a, b): return _OCD._Matx_int_2_1_randn(a, b) Matx21i = _Matx_int_2_1 class _Vec_int_2(_Matx_int_2_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_int_2_channels @staticmethod def all(alpha): return _OCD._Vec_int_2_all(alpha) def mul(self, v): return _OCD._Vec_int_2_mul(self, v) def __call__(self, i): return _OCD._Vec_int_2___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_int_2_swiginit(self, _OCD.new__Vec_int_2(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_int_2___str__(self) __swig_destroy__ = _OCD.delete__Vec_int_2 # Register _Vec_int_2 in _OCD: _OCD._Vec_int_2_swigregister(_Vec_int_2) def _Vec_int_2_all(alpha): return _OCD._Vec_int_2_all(alpha) class _DataType_Vec_int_2(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_int_2_generic_type channels = _OCD._DataType_Vec_int_2_channels fmt = _OCD._DataType_Vec_int_2_fmt def __init__(self): _OCD._DataType_Vec_int_2_swiginit(self, _OCD.new__DataType_Vec_int_2()) __swig_destroy__ = _OCD.delete__DataType_Vec_int_2 # Register _DataType_Vec_int_2 in _OCD: _OCD._DataType_Vec_int_2_swigregister(_DataType_Vec_int_2) Vec2i = _Vec_int_2 DataType_Vec2i = _DataType_Vec_int_2 class _Matx_int_3_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_int_3_1_rows cols = _OCD._Matx_int_3_1_cols channels = _OCD._Matx_int_3_1_channels shortdim = _OCD._Matx_int_3_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_int_3_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_int_3_1_zeros() @staticmethod def ones(): return _OCD._Matx_int_3_1_ones() @staticmethod def eye(): return _OCD._Matx_int_3_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_int_3_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_int_3_1_randn(a, b) def dot(self, v): return _OCD._Matx_int_3_1_dot(self, v) def ddot(self, v): return _OCD._Matx_int_3_1_ddot(self, v) def t(self): return _OCD._Matx_int_3_1_t(self) def mul(self, a): return _OCD._Matx_int_3_1_mul(self, a) def div(self, a): return _OCD._Matx_int_3_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_int_3_1___call__(self, i, j) val = property(_OCD._Matx_int_3_1_val_get, _OCD._Matx_int_3_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_int_3_1_swiginit(self, _OCD.new__Matx_int_3_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_int_3_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_int_3_1 # Register _Matx_int_3_1 in _OCD: _OCD._Matx_int_3_1_swigregister(_Matx_int_3_1) def _Matx_int_3_1_all(alpha): return _OCD._Matx_int_3_1_all(alpha) def _Matx_int_3_1_zeros(): return _OCD._Matx_int_3_1_zeros() def _Matx_int_3_1_ones(): return _OCD._Matx_int_3_1_ones() def _Matx_int_3_1_eye(): return _OCD._Matx_int_3_1_eye() def _Matx_int_3_1_randu(a, b): return _OCD._Matx_int_3_1_randu(a, b) def _Matx_int_3_1_randn(a, b): return _OCD._Matx_int_3_1_randn(a, b) Matx31i = _Matx_int_3_1 class _Vec_int_3(_Matx_int_3_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_int_3_channels @staticmethod def all(alpha): return _OCD._Vec_int_3_all(alpha) def mul(self, v): return _OCD._Vec_int_3_mul(self, v) def __call__(self, i): return _OCD._Vec_int_3___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_int_3_swiginit(self, _OCD.new__Vec_int_3(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_int_3___str__(self) __swig_destroy__ = _OCD.delete__Vec_int_3 # Register _Vec_int_3 in _OCD: _OCD._Vec_int_3_swigregister(_Vec_int_3) def _Vec_int_3_all(alpha): return _OCD._Vec_int_3_all(alpha) class _DataType_Vec_int_3(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_int_3_generic_type channels = _OCD._DataType_Vec_int_3_channels fmt = _OCD._DataType_Vec_int_3_fmt def __init__(self): _OCD._DataType_Vec_int_3_swiginit(self, _OCD.new__DataType_Vec_int_3()) __swig_destroy__ = _OCD.delete__DataType_Vec_int_3 # Register _DataType_Vec_int_3 in _OCD: _OCD._DataType_Vec_int_3_swigregister(_DataType_Vec_int_3) Vec3i = _Vec_int_3 DataType_Vec3i = _DataType_Vec_int_3 class _Matx_int_4_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_int_4_1_rows cols = _OCD._Matx_int_4_1_cols channels = _OCD._Matx_int_4_1_channels shortdim = _OCD._Matx_int_4_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_int_4_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_int_4_1_zeros() @staticmethod def ones(): return _OCD._Matx_int_4_1_ones() @staticmethod def eye(): return _OCD._Matx_int_4_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_int_4_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_int_4_1_randn(a, b) def dot(self, v): return _OCD._Matx_int_4_1_dot(self, v) def ddot(self, v): return _OCD._Matx_int_4_1_ddot(self, v) def t(self): return _OCD._Matx_int_4_1_t(self) def mul(self, a): return _OCD._Matx_int_4_1_mul(self, a) def div(self, a): return _OCD._Matx_int_4_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_int_4_1___call__(self, i, j) val = property(_OCD._Matx_int_4_1_val_get, _OCD._Matx_int_4_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_int_4_1_swiginit(self, _OCD.new__Matx_int_4_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_int_4_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_int_4_1 # Register _Matx_int_4_1 in _OCD: _OCD._Matx_int_4_1_swigregister(_Matx_int_4_1) def _Matx_int_4_1_all(alpha): return _OCD._Matx_int_4_1_all(alpha) def _Matx_int_4_1_zeros(): return _OCD._Matx_int_4_1_zeros() def _Matx_int_4_1_ones(): return _OCD._Matx_int_4_1_ones() def _Matx_int_4_1_eye(): return _OCD._Matx_int_4_1_eye() def _Matx_int_4_1_randu(a, b): return _OCD._Matx_int_4_1_randu(a, b) def _Matx_int_4_1_randn(a, b): return _OCD._Matx_int_4_1_randn(a, b) Matx41i = _Matx_int_4_1 class _Vec_int_4(_Matx_int_4_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_int_4_channels @staticmethod def all(alpha): return _OCD._Vec_int_4_all(alpha) def mul(self, v): return _OCD._Vec_int_4_mul(self, v) def __call__(self, i): return _OCD._Vec_int_4___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_int_4_swiginit(self, _OCD.new__Vec_int_4(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_int_4___str__(self) __swig_destroy__ = _OCD.delete__Vec_int_4 # Register _Vec_int_4 in _OCD: _OCD._Vec_int_4_swigregister(_Vec_int_4) def _Vec_int_4_all(alpha): return _OCD._Vec_int_4_all(alpha) class _DataType_Vec_int_4(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_int_4_generic_type channels = _OCD._DataType_Vec_int_4_channels fmt = _OCD._DataType_Vec_int_4_fmt def __init__(self): _OCD._DataType_Vec_int_4_swiginit(self, _OCD.new__DataType_Vec_int_4()) __swig_destroy__ = _OCD.delete__DataType_Vec_int_4 # Register _DataType_Vec_int_4 in _OCD: _OCD._DataType_Vec_int_4_swigregister(_DataType_Vec_int_4) Vec4i = _Vec_int_4 DataType_Vec4i = _DataType_Vec_int_4 class _Matx_int_6_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_int_6_1_rows cols = _OCD._Matx_int_6_1_cols channels = _OCD._Matx_int_6_1_channels shortdim = _OCD._Matx_int_6_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_int_6_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_int_6_1_zeros() @staticmethod def ones(): return _OCD._Matx_int_6_1_ones() @staticmethod def eye(): return _OCD._Matx_int_6_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_int_6_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_int_6_1_randn(a, b) def dot(self, v): return _OCD._Matx_int_6_1_dot(self, v) def ddot(self, v): return _OCD._Matx_int_6_1_ddot(self, v) def t(self): return _OCD._Matx_int_6_1_t(self) def mul(self, a): return _OCD._Matx_int_6_1_mul(self, a) def div(self, a): return _OCD._Matx_int_6_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_int_6_1___call__(self, i, j) val = property(_OCD._Matx_int_6_1_val_get, _OCD._Matx_int_6_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_int_6_1_swiginit(self, _OCD.new__Matx_int_6_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_int_6_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_int_6_1 # Register _Matx_int_6_1 in _OCD: _OCD._Matx_int_6_1_swigregister(_Matx_int_6_1) def _Matx_int_6_1_all(alpha): return _OCD._Matx_int_6_1_all(alpha) def _Matx_int_6_1_zeros(): return _OCD._Matx_int_6_1_zeros() def _Matx_int_6_1_ones(): return _OCD._Matx_int_6_1_ones() def _Matx_int_6_1_eye(): return _OCD._Matx_int_6_1_eye() def _Matx_int_6_1_randu(a, b): return _OCD._Matx_int_6_1_randu(a, b) def _Matx_int_6_1_randn(a, b): return _OCD._Matx_int_6_1_randn(a, b) Matx61i = _Matx_int_6_1 class _Vec_int_6(_Matx_int_6_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_int_6_channels @staticmethod def all(alpha): return _OCD._Vec_int_6_all(alpha) def mul(self, v): return _OCD._Vec_int_6_mul(self, v) def __call__(self, i): return _OCD._Vec_int_6___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_int_6_swiginit(self, _OCD.new__Vec_int_6(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_int_6___str__(self) __swig_destroy__ = _OCD.delete__Vec_int_6 # Register _Vec_int_6 in _OCD: _OCD._Vec_int_6_swigregister(_Vec_int_6) def _Vec_int_6_all(alpha): return _OCD._Vec_int_6_all(alpha) class _DataType_Vec_int_6(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_int_6_generic_type channels = _OCD._DataType_Vec_int_6_channels fmt = _OCD._DataType_Vec_int_6_fmt def __init__(self): _OCD._DataType_Vec_int_6_swiginit(self, _OCD.new__DataType_Vec_int_6()) __swig_destroy__ = _OCD.delete__DataType_Vec_int_6 # Register _DataType_Vec_int_6 in _OCD: _OCD._DataType_Vec_int_6_swigregister(_DataType_Vec_int_6) Vec6i = _Vec_int_6 DataType_Vec6i = _DataType_Vec_int_6 class _Matx_int_8_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_int_8_1_rows cols = _OCD._Matx_int_8_1_cols channels = _OCD._Matx_int_8_1_channels shortdim = _OCD._Matx_int_8_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_int_8_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_int_8_1_zeros() @staticmethod def ones(): return _OCD._Matx_int_8_1_ones() @staticmethod def eye(): return _OCD._Matx_int_8_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_int_8_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_int_8_1_randn(a, b) def dot(self, v): return _OCD._Matx_int_8_1_dot(self, v) def ddot(self, v): return _OCD._Matx_int_8_1_ddot(self, v) def t(self): return _OCD._Matx_int_8_1_t(self) def mul(self, a): return _OCD._Matx_int_8_1_mul(self, a) def div(self, a): return _OCD._Matx_int_8_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_int_8_1___call__(self, i, j) val = property(_OCD._Matx_int_8_1_val_get, _OCD._Matx_int_8_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_int_8_1_swiginit(self, _OCD.new__Matx_int_8_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_int_8_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_int_8_1 # Register _Matx_int_8_1 in _OCD: _OCD._Matx_int_8_1_swigregister(_Matx_int_8_1) def _Matx_int_8_1_all(alpha): return _OCD._Matx_int_8_1_all(alpha) def _Matx_int_8_1_zeros(): return _OCD._Matx_int_8_1_zeros() def _Matx_int_8_1_ones(): return _OCD._Matx_int_8_1_ones() def _Matx_int_8_1_eye(): return _OCD._Matx_int_8_1_eye() def _Matx_int_8_1_randu(a, b): return _OCD._Matx_int_8_1_randu(a, b) def _Matx_int_8_1_randn(a, b): return _OCD._Matx_int_8_1_randn(a, b) Matx81i = _Matx_int_8_1 class _Vec_int_8(_Matx_int_8_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_int_8_channels @staticmethod def all(alpha): return _OCD._Vec_int_8_all(alpha) def mul(self, v): return _OCD._Vec_int_8_mul(self, v) def __call__(self, i): return _OCD._Vec_int_8___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_int_8_swiginit(self, _OCD.new__Vec_int_8(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_int_8___str__(self) __swig_destroy__ = _OCD.delete__Vec_int_8 # Register _Vec_int_8 in _OCD: _OCD._Vec_int_8_swigregister(_Vec_int_8) def _Vec_int_8_all(alpha): return _OCD._Vec_int_8_all(alpha) class _DataType_Vec_int_8(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_int_8_generic_type channels = _OCD._DataType_Vec_int_8_channels fmt = _OCD._DataType_Vec_int_8_fmt def __init__(self): _OCD._DataType_Vec_int_8_swiginit(self, _OCD.new__DataType_Vec_int_8()) __swig_destroy__ = _OCD.delete__DataType_Vec_int_8 # Register _DataType_Vec_int_8 in _OCD: _OCD._DataType_Vec_int_8_swigregister(_DataType_Vec_int_8) Vec8i = _Vec_int_8 DataType_Vec8i = _DataType_Vec_int_8 class _cv_numpy_sizeof_float(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_float_value def __init__(self): _OCD._cv_numpy_sizeof_float_swiginit(self, _OCD.new__cv_numpy_sizeof_float()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_float # Register _cv_numpy_sizeof_float in _OCD: _OCD._cv_numpy_sizeof_float_swigregister(_cv_numpy_sizeof_float) if _cv_numpy_sizeof_float.value == 1: _cv_numpy_typestr_map["float"] = "|" +"f" + "1" else: _cv_numpy_typestr_map["float"] = _cv_numpy_endianess +"f" + str(_cv_numpy_sizeof_float.value) class floatArray(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def iterator(self): return _OCD.floatArray_iterator(self) def __iter__(self): return self.iterator() def __nonzero__(self): return _OCD.floatArray___nonzero__(self) def __bool__(self): return _OCD.floatArray___bool__(self) def __len__(self): return _OCD.floatArray___len__(self) def __getslice__(self, i, j): return _OCD.floatArray___getslice__(self, i, j) def __setslice__(self, *args): return _OCD.floatArray___setslice__(self, *args) def __delslice__(self, i, j): return _OCD.floatArray___delslice__(self, i, j) def __delitem__(self, *args): return _OCD.floatArray___delitem__(self, *args) def __getitem__(self, *args): return _OCD.floatArray___getitem__(self, *args) def __setitem__(self, *args): return _OCD.floatArray___setitem__(self, *args) def pop(self): return _OCD.floatArray_pop(self) def append(self, x): return _OCD.floatArray_append(self, x) def empty(self): return _OCD.floatArray_empty(self) def size(self): return _OCD.floatArray_size(self) def swap(self, v): return _OCD.floatArray_swap(self, v) def begin(self): return _OCD.floatArray_begin(self) def end(self): return _OCD.floatArray_end(self) def rbegin(self): return _OCD.floatArray_rbegin(self) def rend(self): return _OCD.floatArray_rend(self) def clear(self): return _OCD.floatArray_clear(self) def get_allocator(self): return _OCD.floatArray_get_allocator(self) def pop_back(self): return _OCD.floatArray_pop_back(self) def erase(self, *args): return _OCD.floatArray_erase(self, *args) def __init__(self, *args): _OCD.floatArray_swiginit(self, _OCD.new_floatArray(*args)) def push_back(self, x): return _OCD.floatArray_push_back(self, x) def front(self): return _OCD.floatArray_front(self) def back(self): return _OCD.floatArray_back(self) def assign(self, n, x): return _OCD.floatArray_assign(self, n, x) def resize(self, *args): return _OCD.floatArray_resize(self, *args) def insert(self, *args): return _OCD.floatArray_insert(self, *args) def reserve(self, n): return _OCD.floatArray_reserve(self, n) def capacity(self): return _OCD.floatArray_capacity(self) __swig_destroy__ = _OCD.delete_floatArray # Register floatArray in _OCD: _OCD.floatArray_swigregister(floatArray) _array_map["float"] =floatArray class _Matx_float_2_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_float_2_1_rows cols = _OCD._Matx_float_2_1_cols channels = _OCD._Matx_float_2_1_channels shortdim = _OCD._Matx_float_2_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_float_2_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_float_2_1_zeros() @staticmethod def ones(): return _OCD._Matx_float_2_1_ones() @staticmethod def eye(): return _OCD._Matx_float_2_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_float_2_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_float_2_1_randn(a, b) def dot(self, v): return _OCD._Matx_float_2_1_dot(self, v) def ddot(self, v): return _OCD._Matx_float_2_1_ddot(self, v) def t(self): return _OCD._Matx_float_2_1_t(self) def mul(self, a): return _OCD._Matx_float_2_1_mul(self, a) def div(self, a): return _OCD._Matx_float_2_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_float_2_1___call__(self, i, j) val = property(_OCD._Matx_float_2_1_val_get, _OCD._Matx_float_2_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_float_2_1_swiginit(self, _OCD.new__Matx_float_2_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_float_2_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_float_2_1 # Register _Matx_float_2_1 in _OCD: _OCD._Matx_float_2_1_swigregister(_Matx_float_2_1) def _Matx_float_2_1_all(alpha): return _OCD._Matx_float_2_1_all(alpha) def _Matx_float_2_1_zeros(): return _OCD._Matx_float_2_1_zeros() def _Matx_float_2_1_ones(): return _OCD._Matx_float_2_1_ones() def _Matx_float_2_1_eye(): return _OCD._Matx_float_2_1_eye() def _Matx_float_2_1_randu(a, b): return _OCD._Matx_float_2_1_randu(a, b) def _Matx_float_2_1_randn(a, b): return _OCD._Matx_float_2_1_randn(a, b) Matx21f = _Matx_float_2_1 class _Vec_float_2(_Matx_float_2_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_float_2_channels @staticmethod def all(alpha): return _OCD._Vec_float_2_all(alpha) def mul(self, v): return _OCD._Vec_float_2_mul(self, v) def __call__(self, i): return _OCD._Vec_float_2___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_float_2_swiginit(self, _OCD.new__Vec_float_2(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_float_2___str__(self) __swig_destroy__ = _OCD.delete__Vec_float_2 # Register _Vec_float_2 in _OCD: _OCD._Vec_float_2_swigregister(_Vec_float_2) def _Vec_float_2_all(alpha): return _OCD._Vec_float_2_all(alpha) class _DataType_Vec_float_2(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_float_2_generic_type channels = _OCD._DataType_Vec_float_2_channels fmt = _OCD._DataType_Vec_float_2_fmt def __init__(self): _OCD._DataType_Vec_float_2_swiginit(self, _OCD.new__DataType_Vec_float_2()) __swig_destroy__ = _OCD.delete__DataType_Vec_float_2 # Register _DataType_Vec_float_2 in _OCD: _OCD._DataType_Vec_float_2_swigregister(_DataType_Vec_float_2) Vec2f = _Vec_float_2 DataType_Vec2f = _DataType_Vec_float_2 class _Matx_float_3_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_float_3_1_rows cols = _OCD._Matx_float_3_1_cols channels = _OCD._Matx_float_3_1_channels shortdim = _OCD._Matx_float_3_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_float_3_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_float_3_1_zeros() @staticmethod def ones(): return _OCD._Matx_float_3_1_ones() @staticmethod def eye(): return _OCD._Matx_float_3_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_float_3_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_float_3_1_randn(a, b) def dot(self, v): return _OCD._Matx_float_3_1_dot(self, v) def ddot(self, v): return _OCD._Matx_float_3_1_ddot(self, v) def t(self): return _OCD._Matx_float_3_1_t(self) def mul(self, a): return _OCD._Matx_float_3_1_mul(self, a) def div(self, a): return _OCD._Matx_float_3_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_float_3_1___call__(self, i, j) val = property(_OCD._Matx_float_3_1_val_get, _OCD._Matx_float_3_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_float_3_1_swiginit(self, _OCD.new__Matx_float_3_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_float_3_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_float_3_1 # Register _Matx_float_3_1 in _OCD: _OCD._Matx_float_3_1_swigregister(_Matx_float_3_1) def _Matx_float_3_1_all(alpha): return _OCD._Matx_float_3_1_all(alpha) def _Matx_float_3_1_zeros(): return _OCD._Matx_float_3_1_zeros() def _Matx_float_3_1_ones(): return _OCD._Matx_float_3_1_ones() def _Matx_float_3_1_eye(): return _OCD._Matx_float_3_1_eye() def _Matx_float_3_1_randu(a, b): return _OCD._Matx_float_3_1_randu(a, b) def _Matx_float_3_1_randn(a, b): return _OCD._Matx_float_3_1_randn(a, b) Matx31f = _Matx_float_3_1 class _Vec_float_3(_Matx_float_3_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_float_3_channels @staticmethod def all(alpha): return _OCD._Vec_float_3_all(alpha) def mul(self, v): return _OCD._Vec_float_3_mul(self, v) def __call__(self, i): return _OCD._Vec_float_3___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_float_3_swiginit(self, _OCD.new__Vec_float_3(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_float_3___str__(self) __swig_destroy__ = _OCD.delete__Vec_float_3 # Register _Vec_float_3 in _OCD: _OCD._Vec_float_3_swigregister(_Vec_float_3) def _Vec_float_3_all(alpha): return _OCD._Vec_float_3_all(alpha) class _DataType_Vec_float_3(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_float_3_generic_type channels = _OCD._DataType_Vec_float_3_channels fmt = _OCD._DataType_Vec_float_3_fmt def __init__(self): _OCD._DataType_Vec_float_3_swiginit(self, _OCD.new__DataType_Vec_float_3()) __swig_destroy__ = _OCD.delete__DataType_Vec_float_3 # Register _DataType_Vec_float_3 in _OCD: _OCD._DataType_Vec_float_3_swigregister(_DataType_Vec_float_3) Vec3f = _Vec_float_3 DataType_Vec3f = _DataType_Vec_float_3 class _Matx_float_4_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_float_4_1_rows cols = _OCD._Matx_float_4_1_cols channels = _OCD._Matx_float_4_1_channels shortdim = _OCD._Matx_float_4_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_float_4_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_float_4_1_zeros() @staticmethod def ones(): return _OCD._Matx_float_4_1_ones() @staticmethod def eye(): return _OCD._Matx_float_4_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_float_4_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_float_4_1_randn(a, b) def dot(self, v): return _OCD._Matx_float_4_1_dot(self, v) def ddot(self, v): return _OCD._Matx_float_4_1_ddot(self, v) def t(self): return _OCD._Matx_float_4_1_t(self) def mul(self, a): return _OCD._Matx_float_4_1_mul(self, a) def div(self, a): return _OCD._Matx_float_4_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_float_4_1___call__(self, i, j) val = property(_OCD._Matx_float_4_1_val_get, _OCD._Matx_float_4_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_float_4_1_swiginit(self, _OCD.new__Matx_float_4_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_float_4_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_float_4_1 # Register _Matx_float_4_1 in _OCD: _OCD._Matx_float_4_1_swigregister(_Matx_float_4_1) def _Matx_float_4_1_all(alpha): return _OCD._Matx_float_4_1_all(alpha) def _Matx_float_4_1_zeros(): return _OCD._Matx_float_4_1_zeros() def _Matx_float_4_1_ones(): return _OCD._Matx_float_4_1_ones() def _Matx_float_4_1_eye(): return _OCD._Matx_float_4_1_eye() def _Matx_float_4_1_randu(a, b): return _OCD._Matx_float_4_1_randu(a, b) def _Matx_float_4_1_randn(a, b): return _OCD._Matx_float_4_1_randn(a, b) Matx41f = _Matx_float_4_1 class _Vec_float_4(_Matx_float_4_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_float_4_channels @staticmethod def all(alpha): return _OCD._Vec_float_4_all(alpha) def mul(self, v): return _OCD._Vec_float_4_mul(self, v) def __call__(self, i): return _OCD._Vec_float_4___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_float_4_swiginit(self, _OCD.new__Vec_float_4(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_float_4___str__(self) __swig_destroy__ = _OCD.delete__Vec_float_4 # Register _Vec_float_4 in _OCD: _OCD._Vec_float_4_swigregister(_Vec_float_4) def _Vec_float_4_all(alpha): return _OCD._Vec_float_4_all(alpha) class _DataType_Vec_float_4(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_float_4_generic_type channels = _OCD._DataType_Vec_float_4_channels fmt = _OCD._DataType_Vec_float_4_fmt def __init__(self): _OCD._DataType_Vec_float_4_swiginit(self, _OCD.new__DataType_Vec_float_4()) __swig_destroy__ = _OCD.delete__DataType_Vec_float_4 # Register _DataType_Vec_float_4 in _OCD: _OCD._DataType_Vec_float_4_swigregister(_DataType_Vec_float_4) Vec4f = _Vec_float_4 DataType_Vec4f = _DataType_Vec_float_4 class _Matx_float_6_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_float_6_1_rows cols = _OCD._Matx_float_6_1_cols channels = _OCD._Matx_float_6_1_channels shortdim = _OCD._Matx_float_6_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_float_6_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_float_6_1_zeros() @staticmethod def ones(): return _OCD._Matx_float_6_1_ones() @staticmethod def eye(): return _OCD._Matx_float_6_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_float_6_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_float_6_1_randn(a, b) def dot(self, v): return _OCD._Matx_float_6_1_dot(self, v) def ddot(self, v): return _OCD._Matx_float_6_1_ddot(self, v) def t(self): return _OCD._Matx_float_6_1_t(self) def mul(self, a): return _OCD._Matx_float_6_1_mul(self, a) def div(self, a): return _OCD._Matx_float_6_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_float_6_1___call__(self, i, j) val = property(_OCD._Matx_float_6_1_val_get, _OCD._Matx_float_6_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_float_6_1_swiginit(self, _OCD.new__Matx_float_6_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_float_6_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_float_6_1 # Register _Matx_float_6_1 in _OCD: _OCD._Matx_float_6_1_swigregister(_Matx_float_6_1) def _Matx_float_6_1_all(alpha): return _OCD._Matx_float_6_1_all(alpha) def _Matx_float_6_1_zeros(): return _OCD._Matx_float_6_1_zeros() def _Matx_float_6_1_ones(): return _OCD._Matx_float_6_1_ones() def _Matx_float_6_1_eye(): return _OCD._Matx_float_6_1_eye() def _Matx_float_6_1_randu(a, b): return _OCD._Matx_float_6_1_randu(a, b) def _Matx_float_6_1_randn(a, b): return _OCD._Matx_float_6_1_randn(a, b) Matx61f = _Matx_float_6_1 class _Vec_float_6(_Matx_float_6_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_float_6_channels @staticmethod def all(alpha): return _OCD._Vec_float_6_all(alpha) def mul(self, v): return _OCD._Vec_float_6_mul(self, v) def __call__(self, i): return _OCD._Vec_float_6___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_float_6_swiginit(self, _OCD.new__Vec_float_6(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_float_6___str__(self) __swig_destroy__ = _OCD.delete__Vec_float_6 # Register _Vec_float_6 in _OCD: _OCD._Vec_float_6_swigregister(_Vec_float_6) def _Vec_float_6_all(alpha): return _OCD._Vec_float_6_all(alpha) class _DataType_Vec_float_6(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_float_6_generic_type channels = _OCD._DataType_Vec_float_6_channels fmt = _OCD._DataType_Vec_float_6_fmt def __init__(self): _OCD._DataType_Vec_float_6_swiginit(self, _OCD.new__DataType_Vec_float_6()) __swig_destroy__ = _OCD.delete__DataType_Vec_float_6 # Register _DataType_Vec_float_6 in _OCD: _OCD._DataType_Vec_float_6_swigregister(_DataType_Vec_float_6) Vec6f = _Vec_float_6 DataType_Vec6f = _DataType_Vec_float_6 class _cv_numpy_sizeof_double(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_double_value def __init__(self): _OCD._cv_numpy_sizeof_double_swiginit(self, _OCD.new__cv_numpy_sizeof_double()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_double # Register _cv_numpy_sizeof_double in _OCD: _OCD._cv_numpy_sizeof_double_swigregister(_cv_numpy_sizeof_double) if _cv_numpy_sizeof_double.value == 1: _cv_numpy_typestr_map["double"] = "|" +"f" + "1" else: _cv_numpy_typestr_map["double"] = _cv_numpy_endianess +"f" + str(_cv_numpy_sizeof_double.value) class doubleArray(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def iterator(self): return _OCD.doubleArray_iterator(self) def __iter__(self): return self.iterator() def __nonzero__(self): return _OCD.doubleArray___nonzero__(self) def __bool__(self): return _OCD.doubleArray___bool__(self) def __len__(self): return _OCD.doubleArray___len__(self) def __getslice__(self, i, j): return _OCD.doubleArray___getslice__(self, i, j) def __setslice__(self, *args): return _OCD.doubleArray___setslice__(self, *args) def __delslice__(self, i, j): return _OCD.doubleArray___delslice__(self, i, j) def __delitem__(self, *args): return _OCD.doubleArray___delitem__(self, *args) def __getitem__(self, *args): return _OCD.doubleArray___getitem__(self, *args) def __setitem__(self, *args): return _OCD.doubleArray___setitem__(self, *args) def pop(self): return _OCD.doubleArray_pop(self) def append(self, x): return _OCD.doubleArray_append(self, x) def empty(self): return _OCD.doubleArray_empty(self) def size(self): return _OCD.doubleArray_size(self) def swap(self, v): return _OCD.doubleArray_swap(self, v) def begin(self): return _OCD.doubleArray_begin(self) def end(self): return _OCD.doubleArray_end(self) def rbegin(self): return _OCD.doubleArray_rbegin(self) def rend(self): return _OCD.doubleArray_rend(self) def clear(self): return _OCD.doubleArray_clear(self) def get_allocator(self): return _OCD.doubleArray_get_allocator(self) def pop_back(self): return _OCD.doubleArray_pop_back(self) def erase(self, *args): return _OCD.doubleArray_erase(self, *args) def __init__(self, *args): _OCD.doubleArray_swiginit(self, _OCD.new_doubleArray(*args)) def push_back(self, x): return _OCD.doubleArray_push_back(self, x) def front(self): return _OCD.doubleArray_front(self) def back(self): return _OCD.doubleArray_back(self) def assign(self, n, x): return _OCD.doubleArray_assign(self, n, x) def resize(self, *args): return _OCD.doubleArray_resize(self, *args) def insert(self, *args): return _OCD.doubleArray_insert(self, *args) def reserve(self, n): return _OCD.doubleArray_reserve(self, n) def capacity(self): return _OCD.doubleArray_capacity(self) __swig_destroy__ = _OCD.delete_doubleArray # Register doubleArray in _OCD: _OCD.doubleArray_swigregister(doubleArray) _array_map["double"] =doubleArray class _Matx_double_2_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_double_2_1_rows cols = _OCD._Matx_double_2_1_cols channels = _OCD._Matx_double_2_1_channels shortdim = _OCD._Matx_double_2_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_double_2_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_double_2_1_zeros() @staticmethod def ones(): return _OCD._Matx_double_2_1_ones() @staticmethod def eye(): return _OCD._Matx_double_2_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_double_2_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_double_2_1_randn(a, b) def dot(self, v): return _OCD._Matx_double_2_1_dot(self, v) def ddot(self, v): return _OCD._Matx_double_2_1_ddot(self, v) def t(self): return _OCD._Matx_double_2_1_t(self) def mul(self, a): return _OCD._Matx_double_2_1_mul(self, a) def div(self, a): return _OCD._Matx_double_2_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_double_2_1___call__(self, i, j) val = property(_OCD._Matx_double_2_1_val_get, _OCD._Matx_double_2_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_double_2_1_swiginit(self, _OCD.new__Matx_double_2_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_double_2_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_double_2_1 # Register _Matx_double_2_1 in _OCD: _OCD._Matx_double_2_1_swigregister(_Matx_double_2_1) def _Matx_double_2_1_all(alpha): return _OCD._Matx_double_2_1_all(alpha) def _Matx_double_2_1_zeros(): return _OCD._Matx_double_2_1_zeros() def _Matx_double_2_1_ones(): return _OCD._Matx_double_2_1_ones() def _Matx_double_2_1_eye(): return _OCD._Matx_double_2_1_eye() def _Matx_double_2_1_randu(a, b): return _OCD._Matx_double_2_1_randu(a, b) def _Matx_double_2_1_randn(a, b): return _OCD._Matx_double_2_1_randn(a, b) Matx21d = _Matx_double_2_1 class _Vec_double_2(_Matx_double_2_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_double_2_channels @staticmethod def all(alpha): return _OCD._Vec_double_2_all(alpha) def mul(self, v): return _OCD._Vec_double_2_mul(self, v) def __call__(self, i): return _OCD._Vec_double_2___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_double_2_swiginit(self, _OCD.new__Vec_double_2(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_double_2___str__(self) __swig_destroy__ = _OCD.delete__Vec_double_2 # Register _Vec_double_2 in _OCD: _OCD._Vec_double_2_swigregister(_Vec_double_2) def _Vec_double_2_all(alpha): return _OCD._Vec_double_2_all(alpha) class _DataType_Vec_double_2(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_double_2_generic_type channels = _OCD._DataType_Vec_double_2_channels fmt = _OCD._DataType_Vec_double_2_fmt def __init__(self): _OCD._DataType_Vec_double_2_swiginit(self, _OCD.new__DataType_Vec_double_2()) __swig_destroy__ = _OCD.delete__DataType_Vec_double_2 # Register _DataType_Vec_double_2 in _OCD: _OCD._DataType_Vec_double_2_swigregister(_DataType_Vec_double_2) Vec2d = _Vec_double_2 DataType_Vec2d = _DataType_Vec_double_2 class _Matx_double_3_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_double_3_1_rows cols = _OCD._Matx_double_3_1_cols channels = _OCD._Matx_double_3_1_channels shortdim = _OCD._Matx_double_3_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_double_3_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_double_3_1_zeros() @staticmethod def ones(): return _OCD._Matx_double_3_1_ones() @staticmethod def eye(): return _OCD._Matx_double_3_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_double_3_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_double_3_1_randn(a, b) def dot(self, v): return _OCD._Matx_double_3_1_dot(self, v) def ddot(self, v): return _OCD._Matx_double_3_1_ddot(self, v) def t(self): return _OCD._Matx_double_3_1_t(self) def mul(self, a): return _OCD._Matx_double_3_1_mul(self, a) def div(self, a): return _OCD._Matx_double_3_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_double_3_1___call__(self, i, j) val = property(_OCD._Matx_double_3_1_val_get, _OCD._Matx_double_3_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_double_3_1_swiginit(self, _OCD.new__Matx_double_3_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_double_3_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_double_3_1 # Register _Matx_double_3_1 in _OCD: _OCD._Matx_double_3_1_swigregister(_Matx_double_3_1) def _Matx_double_3_1_all(alpha): return _OCD._Matx_double_3_1_all(alpha) def _Matx_double_3_1_zeros(): return _OCD._Matx_double_3_1_zeros() def _Matx_double_3_1_ones(): return _OCD._Matx_double_3_1_ones() def _Matx_double_3_1_eye(): return _OCD._Matx_double_3_1_eye() def _Matx_double_3_1_randu(a, b): return _OCD._Matx_double_3_1_randu(a, b) def _Matx_double_3_1_randn(a, b): return _OCD._Matx_double_3_1_randn(a, b) Matx31d = _Matx_double_3_1 class _Vec_double_3(_Matx_double_3_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_double_3_channels @staticmethod def all(alpha): return _OCD._Vec_double_3_all(alpha) def mul(self, v): return _OCD._Vec_double_3_mul(self, v) def __call__(self, i): return _OCD._Vec_double_3___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_double_3_swiginit(self, _OCD.new__Vec_double_3(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_double_3___str__(self) __swig_destroy__ = _OCD.delete__Vec_double_3 # Register _Vec_double_3 in _OCD: _OCD._Vec_double_3_swigregister(_Vec_double_3) def _Vec_double_3_all(alpha): return _OCD._Vec_double_3_all(alpha) class _DataType_Vec_double_3(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_double_3_generic_type channels = _OCD._DataType_Vec_double_3_channels fmt = _OCD._DataType_Vec_double_3_fmt def __init__(self): _OCD._DataType_Vec_double_3_swiginit(self, _OCD.new__DataType_Vec_double_3()) __swig_destroy__ = _OCD.delete__DataType_Vec_double_3 # Register _DataType_Vec_double_3 in _OCD: _OCD._DataType_Vec_double_3_swigregister(_DataType_Vec_double_3) Vec3d = _Vec_double_3 DataType_Vec3d = _DataType_Vec_double_3 class _Matx_double_4_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_double_4_1_rows cols = _OCD._Matx_double_4_1_cols channels = _OCD._Matx_double_4_1_channels shortdim = _OCD._Matx_double_4_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_double_4_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_double_4_1_zeros() @staticmethod def ones(): return _OCD._Matx_double_4_1_ones() @staticmethod def eye(): return _OCD._Matx_double_4_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_double_4_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_double_4_1_randn(a, b) def dot(self, v): return _OCD._Matx_double_4_1_dot(self, v) def ddot(self, v): return _OCD._Matx_double_4_1_ddot(self, v) def t(self): return _OCD._Matx_double_4_1_t(self) def mul(self, a): return _OCD._Matx_double_4_1_mul(self, a) def div(self, a): return _OCD._Matx_double_4_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_double_4_1___call__(self, i, j) val = property(_OCD._Matx_double_4_1_val_get, _OCD._Matx_double_4_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_double_4_1_swiginit(self, _OCD.new__Matx_double_4_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_double_4_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_double_4_1 # Register _Matx_double_4_1 in _OCD: _OCD._Matx_double_4_1_swigregister(_Matx_double_4_1) def _Matx_double_4_1_all(alpha): return _OCD._Matx_double_4_1_all(alpha) def _Matx_double_4_1_zeros(): return _OCD._Matx_double_4_1_zeros() def _Matx_double_4_1_ones(): return _OCD._Matx_double_4_1_ones() def _Matx_double_4_1_eye(): return _OCD._Matx_double_4_1_eye() def _Matx_double_4_1_randu(a, b): return _OCD._Matx_double_4_1_randu(a, b) def _Matx_double_4_1_randn(a, b): return _OCD._Matx_double_4_1_randn(a, b) Matx41d = _Matx_double_4_1 class _Vec_double_4(_Matx_double_4_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_double_4_channels @staticmethod def all(alpha): return _OCD._Vec_double_4_all(alpha) def mul(self, v): return _OCD._Vec_double_4_mul(self, v) def __call__(self, i): return _OCD._Vec_double_4___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_double_4_swiginit(self, _OCD.new__Vec_double_4(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_double_4___str__(self) __swig_destroy__ = _OCD.delete__Vec_double_4 # Register _Vec_double_4 in _OCD: _OCD._Vec_double_4_swigregister(_Vec_double_4) def _Vec_double_4_all(alpha): return _OCD._Vec_double_4_all(alpha) class _DataType_Vec_double_4(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_double_4_generic_type channels = _OCD._DataType_Vec_double_4_channels fmt = _OCD._DataType_Vec_double_4_fmt def __init__(self): _OCD._DataType_Vec_double_4_swiginit(self, _OCD.new__DataType_Vec_double_4()) __swig_destroy__ = _OCD.delete__DataType_Vec_double_4 # Register _DataType_Vec_double_4 in _OCD: _OCD._DataType_Vec_double_4_swigregister(_DataType_Vec_double_4) Vec4d = _Vec_double_4 DataType_Vec4d = _DataType_Vec_double_4 class _Matx_double_6_1(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_double_6_1_rows cols = _OCD._Matx_double_6_1_cols channels = _OCD._Matx_double_6_1_channels shortdim = _OCD._Matx_double_6_1_shortdim @staticmethod def all(alpha): return _OCD._Matx_double_6_1_all(alpha) @staticmethod def zeros(): return _OCD._Matx_double_6_1_zeros() @staticmethod def ones(): return _OCD._Matx_double_6_1_ones() @staticmethod def eye(): return _OCD._Matx_double_6_1_eye() @staticmethod def randu(a, b): return _OCD._Matx_double_6_1_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_double_6_1_randn(a, b) def dot(self, v): return _OCD._Matx_double_6_1_dot(self, v) def ddot(self, v): return _OCD._Matx_double_6_1_ddot(self, v) def t(self): return _OCD._Matx_double_6_1_t(self) def mul(self, a): return _OCD._Matx_double_6_1_mul(self, a) def div(self, a): return _OCD._Matx_double_6_1_div(self, a) def __call__(self, i, j): return _OCD._Matx_double_6_1___call__(self, i, j) val = property(_OCD._Matx_double_6_1_val_get, _OCD._Matx_double_6_1_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_double_6_1_swiginit(self, _OCD.new__Matx_double_6_1(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_double_6_1___str__(self) __swig_destroy__ = _OCD.delete__Matx_double_6_1 # Register _Matx_double_6_1 in _OCD: _OCD._Matx_double_6_1_swigregister(_Matx_double_6_1) def _Matx_double_6_1_all(alpha): return _OCD._Matx_double_6_1_all(alpha) def _Matx_double_6_1_zeros(): return _OCD._Matx_double_6_1_zeros() def _Matx_double_6_1_ones(): return _OCD._Matx_double_6_1_ones() def _Matx_double_6_1_eye(): return _OCD._Matx_double_6_1_eye() def _Matx_double_6_1_randu(a, b): return _OCD._Matx_double_6_1_randu(a, b) def _Matx_double_6_1_randn(a, b): return _OCD._Matx_double_6_1_randn(a, b) Matx61d = _Matx_double_6_1 class _Vec_double_6(_Matx_double_6_1): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr channels = _OCD._Vec_double_6_channels @staticmethod def all(alpha): return _OCD._Vec_double_6_all(alpha) def mul(self, v): return _OCD._Vec_double_6_mul(self, v) def __call__(self, i): return _OCD._Vec_double_6___call__(self, i) import re _re_pattern = re.compile("^_Vec_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) array = _array_map[value_type](rows) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Vec_double_6_swiginit(self, _OCD.new__Vec_double_6(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) return {"shape": (rows, 1), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) if not isinstance(key, int): raise TypeError if key >= rows: raise IndexError return self(key) def __str__(self): return _OCD._Vec_double_6___str__(self) __swig_destroy__ = _OCD.delete__Vec_double_6 # Register _Vec_double_6 in _OCD: _OCD._Vec_double_6_swigregister(_Vec_double_6) def _Vec_double_6_all(alpha): return _OCD._Vec_double_6_all(alpha) class _DataType_Vec_double_6(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr generic_type = _OCD._DataType_Vec_double_6_generic_type channels = _OCD._DataType_Vec_double_6_channels fmt = _OCD._DataType_Vec_double_6_fmt def __init__(self): _OCD._DataType_Vec_double_6_swiginit(self, _OCD.new__DataType_Vec_double_6()) __swig_destroy__ = _OCD.delete__DataType_Vec_double_6 # Register _DataType_Vec_double_6 in _OCD: _OCD._DataType_Vec_double_6_swigregister(_DataType_Vec_double_6) Vec6d = _Vec_double_6 DataType_Vec6d = _DataType_Vec_double_6 class _mat__np_array_constructor(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self): _OCD._mat__np_array_constructor_swiginit(self, _OCD.new__mat__np_array_constructor()) __swig_destroy__ = _OCD.delete__mat__np_array_constructor # Register _mat__np_array_constructor in _OCD: _OCD._mat__np_array_constructor_swigregister(_mat__np_array_constructor) def _depthToDtype(depth): return _OCD._depthToDtype(depth) def _toCvType(dtype, nChannel): return _OCD._toCvType(dtype, nChannel) class _cv_numpy_sizeof_uchar(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_uchar_value def __init__(self): _OCD._cv_numpy_sizeof_uchar_swiginit(self, _OCD.new__cv_numpy_sizeof_uchar()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_uchar # Register _cv_numpy_sizeof_uchar in _OCD: _OCD._cv_numpy_sizeof_uchar_swigregister(_cv_numpy_sizeof_uchar) if _cv_numpy_sizeof_uchar.value == 1: _cv_numpy_typestr_map["uchar"] = "|" +"u" + "1" else: _cv_numpy_typestr_map["uchar"] = _cv_numpy_endianess +"u" + str(_cv_numpy_sizeof_uchar.value) class _Mat__uchar(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__uchar_create(self, *args) def cross(self, m): return _OCD._Mat__uchar_cross(self, m) def row(self, y): return _OCD._Mat__uchar_row(self, y) def col(self, x): return _OCD._Mat__uchar_col(self, x) def diag(self, d=0): return _OCD._Mat__uchar_diag(self, d) def clone(self): return _OCD._Mat__uchar_clone(self) def elemSize(self): return _OCD._Mat__uchar_elemSize(self) def elemSize1(self): return _OCD._Mat__uchar_elemSize1(self) def type(self): return _OCD._Mat__uchar_type(self) def depth(self): return _OCD._Mat__uchar_depth(self) def channels(self): return _OCD._Mat__uchar_channels(self) def step1(self, i=0): return _OCD._Mat__uchar_step1(self, i) def stepT(self, i=0): return _OCD._Mat__uchar_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__uchar_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__uchar___call__(self, *args) def __init__(self, *args): _OCD._Mat__uchar_swiginit(self, _OCD.new__Mat__uchar(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__uchar___str__(self) __swig_destroy__ = _OCD.delete__Mat__uchar # Register _Mat__uchar in _OCD: _OCD._Mat__uchar_swigregister(_Mat__uchar) Mat1b = _Mat__uchar class _cv_numpy_sizeof_Vec2b(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_Vec2b_value def __init__(self): _OCD._cv_numpy_sizeof_Vec2b_swiginit(self, _OCD.new__cv_numpy_sizeof_Vec2b()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_Vec2b # Register _cv_numpy_sizeof_Vec2b in _OCD: _OCD._cv_numpy_sizeof_Vec2b_swigregister(_cv_numpy_sizeof_Vec2b) if _cv_numpy_sizeof_Vec2b.value == 1: _cv_numpy_typestr_map["Vec2b"] = "|" +"u" + "1" else: _cv_numpy_typestr_map["Vec2b"] = _cv_numpy_endianess +"u" + str(_cv_numpy_sizeof_Vec2b.value) class _Mat__Vec2b(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__Vec2b_create(self, *args) def cross(self, m): return _OCD._Mat__Vec2b_cross(self, m) def row(self, y): return _OCD._Mat__Vec2b_row(self, y) def col(self, x): return _OCD._Mat__Vec2b_col(self, x) def diag(self, d=0): return _OCD._Mat__Vec2b_diag(self, d) def clone(self): return _OCD._Mat__Vec2b_clone(self) def elemSize(self): return _OCD._Mat__Vec2b_elemSize(self) def elemSize1(self): return _OCD._Mat__Vec2b_elemSize1(self) def type(self): return _OCD._Mat__Vec2b_type(self) def depth(self): return _OCD._Mat__Vec2b_depth(self) def channels(self): return _OCD._Mat__Vec2b_channels(self) def step1(self, i=0): return _OCD._Mat__Vec2b_step1(self, i) def stepT(self, i=0): return _OCD._Mat__Vec2b_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__Vec2b_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__Vec2b___call__(self, *args) def __init__(self, *args): _OCD._Mat__Vec2b_swiginit(self, _OCD.new__Mat__Vec2b(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__Vec2b___str__(self) __swig_destroy__ = _OCD.delete__Mat__Vec2b # Register _Mat__Vec2b in _OCD: _OCD._Mat__Vec2b_swigregister(_Mat__Vec2b) Mat2b = _Mat__Vec2b class _cv_numpy_sizeof_Vec3b(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_Vec3b_value def __init__(self): _OCD._cv_numpy_sizeof_Vec3b_swiginit(self, _OCD.new__cv_numpy_sizeof_Vec3b()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_Vec3b # Register _cv_numpy_sizeof_Vec3b in _OCD: _OCD._cv_numpy_sizeof_Vec3b_swigregister(_cv_numpy_sizeof_Vec3b) if _cv_numpy_sizeof_Vec3b.value == 1: _cv_numpy_typestr_map["Vec3b"] = "|" +"u" + "1" else: _cv_numpy_typestr_map["Vec3b"] = _cv_numpy_endianess +"u" + str(_cv_numpy_sizeof_Vec3b.value) class _Mat__Vec3b(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__Vec3b_create(self, *args) def cross(self, m): return _OCD._Mat__Vec3b_cross(self, m) def row(self, y): return _OCD._Mat__Vec3b_row(self, y) def col(self, x): return _OCD._Mat__Vec3b_col(self, x) def diag(self, d=0): return _OCD._Mat__Vec3b_diag(self, d) def clone(self): return _OCD._Mat__Vec3b_clone(self) def elemSize(self): return _OCD._Mat__Vec3b_elemSize(self) def elemSize1(self): return _OCD._Mat__Vec3b_elemSize1(self) def type(self): return _OCD._Mat__Vec3b_type(self) def depth(self): return _OCD._Mat__Vec3b_depth(self) def channels(self): return _OCD._Mat__Vec3b_channels(self) def step1(self, i=0): return _OCD._Mat__Vec3b_step1(self, i) def stepT(self, i=0): return _OCD._Mat__Vec3b_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__Vec3b_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__Vec3b___call__(self, *args) def __init__(self, *args): _OCD._Mat__Vec3b_swiginit(self, _OCD.new__Mat__Vec3b(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__Vec3b___str__(self) __swig_destroy__ = _OCD.delete__Mat__Vec3b # Register _Mat__Vec3b in _OCD: _OCD._Mat__Vec3b_swigregister(_Mat__Vec3b) Mat3b = _Mat__Vec3b class _cv_numpy_sizeof_Vec4b(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_Vec4b_value def __init__(self): _OCD._cv_numpy_sizeof_Vec4b_swiginit(self, _OCD.new__cv_numpy_sizeof_Vec4b()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_Vec4b # Register _cv_numpy_sizeof_Vec4b in _OCD: _OCD._cv_numpy_sizeof_Vec4b_swigregister(_cv_numpy_sizeof_Vec4b) if _cv_numpy_sizeof_Vec4b.value == 1: _cv_numpy_typestr_map["Vec4b"] = "|" +"u" + "1" else: _cv_numpy_typestr_map["Vec4b"] = _cv_numpy_endianess +"u" + str(_cv_numpy_sizeof_Vec4b.value) class _Mat__Vec4b(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__Vec4b_create(self, *args) def cross(self, m): return _OCD._Mat__Vec4b_cross(self, m) def row(self, y): return _OCD._Mat__Vec4b_row(self, y) def col(self, x): return _OCD._Mat__Vec4b_col(self, x) def diag(self, d=0): return _OCD._Mat__Vec4b_diag(self, d) def clone(self): return _OCD._Mat__Vec4b_clone(self) def elemSize(self): return _OCD._Mat__Vec4b_elemSize(self) def elemSize1(self): return _OCD._Mat__Vec4b_elemSize1(self) def type(self): return _OCD._Mat__Vec4b_type(self) def depth(self): return _OCD._Mat__Vec4b_depth(self) def channels(self): return _OCD._Mat__Vec4b_channels(self) def step1(self, i=0): return _OCD._Mat__Vec4b_step1(self, i) def stepT(self, i=0): return _OCD._Mat__Vec4b_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__Vec4b_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__Vec4b___call__(self, *args) def __init__(self, *args): _OCD._Mat__Vec4b_swiginit(self, _OCD.new__Mat__Vec4b(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__Vec4b___str__(self) __swig_destroy__ = _OCD.delete__Mat__Vec4b # Register _Mat__Vec4b in _OCD: _OCD._Mat__Vec4b_swigregister(_Mat__Vec4b) Mat4b = _Mat__Vec4b class _Mat__short(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__short_create(self, *args) def cross(self, m): return _OCD._Mat__short_cross(self, m) def row(self, y): return _OCD._Mat__short_row(self, y) def col(self, x): return _OCD._Mat__short_col(self, x) def diag(self, d=0): return _OCD._Mat__short_diag(self, d) def clone(self): return _OCD._Mat__short_clone(self) def elemSize(self): return _OCD._Mat__short_elemSize(self) def elemSize1(self): return _OCD._Mat__short_elemSize1(self) def type(self): return _OCD._Mat__short_type(self) def depth(self): return _OCD._Mat__short_depth(self) def channels(self): return _OCD._Mat__short_channels(self) def step1(self, i=0): return _OCD._Mat__short_step1(self, i) def stepT(self, i=0): return _OCD._Mat__short_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__short_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__short___call__(self, *args) def __init__(self, *args): _OCD._Mat__short_swiginit(self, _OCD.new__Mat__short(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__short___str__(self) __swig_destroy__ = _OCD.delete__Mat__short # Register _Mat__short in _OCD: _OCD._Mat__short_swigregister(_Mat__short) Mat1s = _Mat__short class _cv_numpy_sizeof_Vec2s(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_Vec2s_value def __init__(self): _OCD._cv_numpy_sizeof_Vec2s_swiginit(self, _OCD.new__cv_numpy_sizeof_Vec2s()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_Vec2s # Register _cv_numpy_sizeof_Vec2s in _OCD: _OCD._cv_numpy_sizeof_Vec2s_swigregister(_cv_numpy_sizeof_Vec2s) if _cv_numpy_sizeof_Vec2s.value == 1: _cv_numpy_typestr_map["Vec2s"] = "|" +"i" + "1" else: _cv_numpy_typestr_map["Vec2s"] = _cv_numpy_endianess +"i" + str(_cv_numpy_sizeof_Vec2s.value) class _Mat__Vec2s(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__Vec2s_create(self, *args) def cross(self, m): return _OCD._Mat__Vec2s_cross(self, m) def row(self, y): return _OCD._Mat__Vec2s_row(self, y) def col(self, x): return _OCD._Mat__Vec2s_col(self, x) def diag(self, d=0): return _OCD._Mat__Vec2s_diag(self, d) def clone(self): return _OCD._Mat__Vec2s_clone(self) def elemSize(self): return _OCD._Mat__Vec2s_elemSize(self) def elemSize1(self): return _OCD._Mat__Vec2s_elemSize1(self) def type(self): return _OCD._Mat__Vec2s_type(self) def depth(self): return _OCD._Mat__Vec2s_depth(self) def channels(self): return _OCD._Mat__Vec2s_channels(self) def step1(self, i=0): return _OCD._Mat__Vec2s_step1(self, i) def stepT(self, i=0): return _OCD._Mat__Vec2s_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__Vec2s_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__Vec2s___call__(self, *args) def __init__(self, *args): _OCD._Mat__Vec2s_swiginit(self, _OCD.new__Mat__Vec2s(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__Vec2s___str__(self) __swig_destroy__ = _OCD.delete__Mat__Vec2s # Register _Mat__Vec2s in _OCD: _OCD._Mat__Vec2s_swigregister(_Mat__Vec2s) Mat2s = _Mat__Vec2s class _cv_numpy_sizeof_Vec3s(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_Vec3s_value def __init__(self): _OCD._cv_numpy_sizeof_Vec3s_swiginit(self, _OCD.new__cv_numpy_sizeof_Vec3s()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_Vec3s # Register _cv_numpy_sizeof_Vec3s in _OCD: _OCD._cv_numpy_sizeof_Vec3s_swigregister(_cv_numpy_sizeof_Vec3s) if _cv_numpy_sizeof_Vec3s.value == 1: _cv_numpy_typestr_map["Vec3s"] = "|" +"i" + "1" else: _cv_numpy_typestr_map["Vec3s"] = _cv_numpy_endianess +"i" + str(_cv_numpy_sizeof_Vec3s.value) class _Mat__Vec3s(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__Vec3s_create(self, *args) def cross(self, m): return _OCD._Mat__Vec3s_cross(self, m) def row(self, y): return _OCD._Mat__Vec3s_row(self, y) def col(self, x): return _OCD._Mat__Vec3s_col(self, x) def diag(self, d=0): return _OCD._Mat__Vec3s_diag(self, d) def clone(self): return _OCD._Mat__Vec3s_clone(self) def elemSize(self): return _OCD._Mat__Vec3s_elemSize(self) def elemSize1(self): return _OCD._Mat__Vec3s_elemSize1(self) def type(self): return _OCD._Mat__Vec3s_type(self) def depth(self): return _OCD._Mat__Vec3s_depth(self) def channels(self): return _OCD._Mat__Vec3s_channels(self) def step1(self, i=0): return _OCD._Mat__Vec3s_step1(self, i) def stepT(self, i=0): return _OCD._Mat__Vec3s_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__Vec3s_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__Vec3s___call__(self, *args) def __init__(self, *args): _OCD._Mat__Vec3s_swiginit(self, _OCD.new__Mat__Vec3s(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__Vec3s___str__(self) __swig_destroy__ = _OCD.delete__Mat__Vec3s # Register _Mat__Vec3s in _OCD: _OCD._Mat__Vec3s_swigregister(_Mat__Vec3s) Mat3s = _Mat__Vec3s class _cv_numpy_sizeof_Vec4s(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_Vec4s_value def __init__(self): _OCD._cv_numpy_sizeof_Vec4s_swiginit(self, _OCD.new__cv_numpy_sizeof_Vec4s()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_Vec4s # Register _cv_numpy_sizeof_Vec4s in _OCD: _OCD._cv_numpy_sizeof_Vec4s_swigregister(_cv_numpy_sizeof_Vec4s) if _cv_numpy_sizeof_Vec4s.value == 1: _cv_numpy_typestr_map["Vec4s"] = "|" +"i" + "1" else: _cv_numpy_typestr_map["Vec4s"] = _cv_numpy_endianess +"i" + str(_cv_numpy_sizeof_Vec4s.value) class _Mat__Vec4s(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__Vec4s_create(self, *args) def cross(self, m): return _OCD._Mat__Vec4s_cross(self, m) def row(self, y): return _OCD._Mat__Vec4s_row(self, y) def col(self, x): return _OCD._Mat__Vec4s_col(self, x) def diag(self, d=0): return _OCD._Mat__Vec4s_diag(self, d) def clone(self): return _OCD._Mat__Vec4s_clone(self) def elemSize(self): return _OCD._Mat__Vec4s_elemSize(self) def elemSize1(self): return _OCD._Mat__Vec4s_elemSize1(self) def type(self): return _OCD._Mat__Vec4s_type(self) def depth(self): return _OCD._Mat__Vec4s_depth(self) def channels(self): return _OCD._Mat__Vec4s_channels(self) def step1(self, i=0): return _OCD._Mat__Vec4s_step1(self, i) def stepT(self, i=0): return _OCD._Mat__Vec4s_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__Vec4s_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__Vec4s___call__(self, *args) def __init__(self, *args): _OCD._Mat__Vec4s_swiginit(self, _OCD.new__Mat__Vec4s(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__Vec4s___str__(self) __swig_destroy__ = _OCD.delete__Mat__Vec4s # Register _Mat__Vec4s in _OCD: _OCD._Mat__Vec4s_swigregister(_Mat__Vec4s) Mat4s = _Mat__Vec4s class _Mat__ushort(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__ushort_create(self, *args) def cross(self, m): return _OCD._Mat__ushort_cross(self, m) def row(self, y): return _OCD._Mat__ushort_row(self, y) def col(self, x): return _OCD._Mat__ushort_col(self, x) def diag(self, d=0): return _OCD._Mat__ushort_diag(self, d) def clone(self): return _OCD._Mat__ushort_clone(self) def elemSize(self): return _OCD._Mat__ushort_elemSize(self) def elemSize1(self): return _OCD._Mat__ushort_elemSize1(self) def type(self): return _OCD._Mat__ushort_type(self) def depth(self): return _OCD._Mat__ushort_depth(self) def channels(self): return _OCD._Mat__ushort_channels(self) def step1(self, i=0): return _OCD._Mat__ushort_step1(self, i) def stepT(self, i=0): return _OCD._Mat__ushort_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__ushort_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__ushort___call__(self, *args) def __init__(self, *args): _OCD._Mat__ushort_swiginit(self, _OCD.new__Mat__ushort(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__ushort___str__(self) __swig_destroy__ = _OCD.delete__Mat__ushort # Register _Mat__ushort in _OCD: _OCD._Mat__ushort_swigregister(_Mat__ushort) Mat1w = _Mat__ushort class _cv_numpy_sizeof_Vec2w(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_Vec2w_value def __init__(self): _OCD._cv_numpy_sizeof_Vec2w_swiginit(self, _OCD.new__cv_numpy_sizeof_Vec2w()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_Vec2w # Register _cv_numpy_sizeof_Vec2w in _OCD: _OCD._cv_numpy_sizeof_Vec2w_swigregister(_cv_numpy_sizeof_Vec2w) if _cv_numpy_sizeof_Vec2w.value == 1: _cv_numpy_typestr_map["Vec2w"] = "|" +"u" + "1" else: _cv_numpy_typestr_map["Vec2w"] = _cv_numpy_endianess +"u" + str(_cv_numpy_sizeof_Vec2w.value) class _Mat__Vec2w(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__Vec2w_create(self, *args) def cross(self, m): return _OCD._Mat__Vec2w_cross(self, m) def row(self, y): return _OCD._Mat__Vec2w_row(self, y) def col(self, x): return _OCD._Mat__Vec2w_col(self, x) def diag(self, d=0): return _OCD._Mat__Vec2w_diag(self, d) def clone(self): return _OCD._Mat__Vec2w_clone(self) def elemSize(self): return _OCD._Mat__Vec2w_elemSize(self) def elemSize1(self): return _OCD._Mat__Vec2w_elemSize1(self) def type(self): return _OCD._Mat__Vec2w_type(self) def depth(self): return _OCD._Mat__Vec2w_depth(self) def channels(self): return _OCD._Mat__Vec2w_channels(self) def step1(self, i=0): return _OCD._Mat__Vec2w_step1(self, i) def stepT(self, i=0): return _OCD._Mat__Vec2w_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__Vec2w_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__Vec2w___call__(self, *args) def __init__(self, *args): _OCD._Mat__Vec2w_swiginit(self, _OCD.new__Mat__Vec2w(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__Vec2w___str__(self) __swig_destroy__ = _OCD.delete__Mat__Vec2w # Register _Mat__Vec2w in _OCD: _OCD._Mat__Vec2w_swigregister(_Mat__Vec2w) Mat2w = _Mat__Vec2w class _cv_numpy_sizeof_Vec3w(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_Vec3w_value def __init__(self): _OCD._cv_numpy_sizeof_Vec3w_swiginit(self, _OCD.new__cv_numpy_sizeof_Vec3w()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_Vec3w # Register _cv_numpy_sizeof_Vec3w in _OCD: _OCD._cv_numpy_sizeof_Vec3w_swigregister(_cv_numpy_sizeof_Vec3w) if _cv_numpy_sizeof_Vec3w.value == 1: _cv_numpy_typestr_map["Vec3w"] = "|" +"u" + "1" else: _cv_numpy_typestr_map["Vec3w"] = _cv_numpy_endianess +"u" + str(_cv_numpy_sizeof_Vec3w.value) class _Mat__Vec3w(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__Vec3w_create(self, *args) def cross(self, m): return _OCD._Mat__Vec3w_cross(self, m) def row(self, y): return _OCD._Mat__Vec3w_row(self, y) def col(self, x): return _OCD._Mat__Vec3w_col(self, x) def diag(self, d=0): return _OCD._Mat__Vec3w_diag(self, d) def clone(self): return _OCD._Mat__Vec3w_clone(self) def elemSize(self): return _OCD._Mat__Vec3w_elemSize(self) def elemSize1(self): return _OCD._Mat__Vec3w_elemSize1(self) def type(self): return _OCD._Mat__Vec3w_type(self) def depth(self): return _OCD._Mat__Vec3w_depth(self) def channels(self): return _OCD._Mat__Vec3w_channels(self) def step1(self, i=0): return _OCD._Mat__Vec3w_step1(self, i) def stepT(self, i=0): return _OCD._Mat__Vec3w_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__Vec3w_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__Vec3w___call__(self, *args) def __init__(self, *args): _OCD._Mat__Vec3w_swiginit(self, _OCD.new__Mat__Vec3w(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__Vec3w___str__(self) __swig_destroy__ = _OCD.delete__Mat__Vec3w # Register _Mat__Vec3w in _OCD: _OCD._Mat__Vec3w_swigregister(_Mat__Vec3w) Mat3w = _Mat__Vec3w class _cv_numpy_sizeof_Vec4w(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_Vec4w_value def __init__(self): _OCD._cv_numpy_sizeof_Vec4w_swiginit(self, _OCD.new__cv_numpy_sizeof_Vec4w()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_Vec4w # Register _cv_numpy_sizeof_Vec4w in _OCD: _OCD._cv_numpy_sizeof_Vec4w_swigregister(_cv_numpy_sizeof_Vec4w) if _cv_numpy_sizeof_Vec4w.value == 1: _cv_numpy_typestr_map["Vec4w"] = "|" +"u" + "1" else: _cv_numpy_typestr_map["Vec4w"] = _cv_numpy_endianess +"u" + str(_cv_numpy_sizeof_Vec4w.value) class _Mat__Vec4w(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__Vec4w_create(self, *args) def cross(self, m): return _OCD._Mat__Vec4w_cross(self, m) def row(self, y): return _OCD._Mat__Vec4w_row(self, y) def col(self, x): return _OCD._Mat__Vec4w_col(self, x) def diag(self, d=0): return _OCD._Mat__Vec4w_diag(self, d) def clone(self): return _OCD._Mat__Vec4w_clone(self) def elemSize(self): return _OCD._Mat__Vec4w_elemSize(self) def elemSize1(self): return _OCD._Mat__Vec4w_elemSize1(self) def type(self): return _OCD._Mat__Vec4w_type(self) def depth(self): return _OCD._Mat__Vec4w_depth(self) def channels(self): return _OCD._Mat__Vec4w_channels(self) def step1(self, i=0): return _OCD._Mat__Vec4w_step1(self, i) def stepT(self, i=0): return _OCD._Mat__Vec4w_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__Vec4w_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__Vec4w___call__(self, *args) def __init__(self, *args): _OCD._Mat__Vec4w_swiginit(self, _OCD.new__Mat__Vec4w(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__Vec4w___str__(self) __swig_destroy__ = _OCD.delete__Mat__Vec4w # Register _Mat__Vec4w in _OCD: _OCD._Mat__Vec4w_swigregister(_Mat__Vec4w) Mat4w = _Mat__Vec4w class _Mat__int(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__int_create(self, *args) def cross(self, m): return _OCD._Mat__int_cross(self, m) def row(self, y): return _OCD._Mat__int_row(self, y) def col(self, x): return _OCD._Mat__int_col(self, x) def diag(self, d=0): return _OCD._Mat__int_diag(self, d) def clone(self): return _OCD._Mat__int_clone(self) def elemSize(self): return _OCD._Mat__int_elemSize(self) def elemSize1(self): return _OCD._Mat__int_elemSize1(self) def type(self): return _OCD._Mat__int_type(self) def depth(self): return _OCD._Mat__int_depth(self) def channels(self): return _OCD._Mat__int_channels(self) def step1(self, i=0): return _OCD._Mat__int_step1(self, i) def stepT(self, i=0): return _OCD._Mat__int_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__int_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__int___call__(self, *args) def __init__(self, *args): _OCD._Mat__int_swiginit(self, _OCD.new__Mat__int(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__int___str__(self) __swig_destroy__ = _OCD.delete__Mat__int # Register _Mat__int in _OCD: _OCD._Mat__int_swigregister(_Mat__int) Mat1i = _Mat__int class _cv_numpy_sizeof_Vec2i(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_Vec2i_value def __init__(self): _OCD._cv_numpy_sizeof_Vec2i_swiginit(self, _OCD.new__cv_numpy_sizeof_Vec2i()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_Vec2i # Register _cv_numpy_sizeof_Vec2i in _OCD: _OCD._cv_numpy_sizeof_Vec2i_swigregister(_cv_numpy_sizeof_Vec2i) if _cv_numpy_sizeof_Vec2i.value == 1: _cv_numpy_typestr_map["Vec2i"] = "|" +"i" + "1" else: _cv_numpy_typestr_map["Vec2i"] = _cv_numpy_endianess +"i" + str(_cv_numpy_sizeof_Vec2i.value) class _Mat__Vec2i(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__Vec2i_create(self, *args) def cross(self, m): return _OCD._Mat__Vec2i_cross(self, m) def row(self, y): return _OCD._Mat__Vec2i_row(self, y) def col(self, x): return _OCD._Mat__Vec2i_col(self, x) def diag(self, d=0): return _OCD._Mat__Vec2i_diag(self, d) def clone(self): return _OCD._Mat__Vec2i_clone(self) def elemSize(self): return _OCD._Mat__Vec2i_elemSize(self) def elemSize1(self): return _OCD._Mat__Vec2i_elemSize1(self) def type(self): return _OCD._Mat__Vec2i_type(self) def depth(self): return _OCD._Mat__Vec2i_depth(self) def channels(self): return _OCD._Mat__Vec2i_channels(self) def step1(self, i=0): return _OCD._Mat__Vec2i_step1(self, i) def stepT(self, i=0): return _OCD._Mat__Vec2i_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__Vec2i_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__Vec2i___call__(self, *args) def __init__(self, *args): _OCD._Mat__Vec2i_swiginit(self, _OCD.new__Mat__Vec2i(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__Vec2i___str__(self) __swig_destroy__ = _OCD.delete__Mat__Vec2i # Register _Mat__Vec2i in _OCD: _OCD._Mat__Vec2i_swigregister(_Mat__Vec2i) Mat2i = _Mat__Vec2i class _cv_numpy_sizeof_Vec3i(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_Vec3i_value def __init__(self): _OCD._cv_numpy_sizeof_Vec3i_swiginit(self, _OCD.new__cv_numpy_sizeof_Vec3i()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_Vec3i # Register _cv_numpy_sizeof_Vec3i in _OCD: _OCD._cv_numpy_sizeof_Vec3i_swigregister(_cv_numpy_sizeof_Vec3i) if _cv_numpy_sizeof_Vec3i.value == 1: _cv_numpy_typestr_map["Vec3i"] = "|" +"i" + "1" else: _cv_numpy_typestr_map["Vec3i"] = _cv_numpy_endianess +"i" + str(_cv_numpy_sizeof_Vec3i.value) class _Mat__Vec3i(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__Vec3i_create(self, *args) def cross(self, m): return _OCD._Mat__Vec3i_cross(self, m) def row(self, y): return _OCD._Mat__Vec3i_row(self, y) def col(self, x): return _OCD._Mat__Vec3i_col(self, x) def diag(self, d=0): return _OCD._Mat__Vec3i_diag(self, d) def clone(self): return _OCD._Mat__Vec3i_clone(self) def elemSize(self): return _OCD._Mat__Vec3i_elemSize(self) def elemSize1(self): return _OCD._Mat__Vec3i_elemSize1(self) def type(self): return _OCD._Mat__Vec3i_type(self) def depth(self): return _OCD._Mat__Vec3i_depth(self) def channels(self): return _OCD._Mat__Vec3i_channels(self) def step1(self, i=0): return _OCD._Mat__Vec3i_step1(self, i) def stepT(self, i=0): return _OCD._Mat__Vec3i_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__Vec3i_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__Vec3i___call__(self, *args) def __init__(self, *args): _OCD._Mat__Vec3i_swiginit(self, _OCD.new__Mat__Vec3i(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__Vec3i___str__(self) __swig_destroy__ = _OCD.delete__Mat__Vec3i # Register _Mat__Vec3i in _OCD: _OCD._Mat__Vec3i_swigregister(_Mat__Vec3i) Mat3i = _Mat__Vec3i class _cv_numpy_sizeof_Vec4i(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_Vec4i_value def __init__(self): _OCD._cv_numpy_sizeof_Vec4i_swiginit(self, _OCD.new__cv_numpy_sizeof_Vec4i()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_Vec4i # Register _cv_numpy_sizeof_Vec4i in _OCD: _OCD._cv_numpy_sizeof_Vec4i_swigregister(_cv_numpy_sizeof_Vec4i) if _cv_numpy_sizeof_Vec4i.value == 1: _cv_numpy_typestr_map["Vec4i"] = "|" +"i" + "1" else: _cv_numpy_typestr_map["Vec4i"] = _cv_numpy_endianess +"i" + str(_cv_numpy_sizeof_Vec4i.value) class _Mat__Vec4i(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__Vec4i_create(self, *args) def cross(self, m): return _OCD._Mat__Vec4i_cross(self, m) def row(self, y): return _OCD._Mat__Vec4i_row(self, y) def col(self, x): return _OCD._Mat__Vec4i_col(self, x) def diag(self, d=0): return _OCD._Mat__Vec4i_diag(self, d) def clone(self): return _OCD._Mat__Vec4i_clone(self) def elemSize(self): return _OCD._Mat__Vec4i_elemSize(self) def elemSize1(self): return _OCD._Mat__Vec4i_elemSize1(self) def type(self): return _OCD._Mat__Vec4i_type(self) def depth(self): return _OCD._Mat__Vec4i_depth(self) def channels(self): return _OCD._Mat__Vec4i_channels(self) def step1(self, i=0): return _OCD._Mat__Vec4i_step1(self, i) def stepT(self, i=0): return _OCD._Mat__Vec4i_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__Vec4i_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__Vec4i___call__(self, *args) def __init__(self, *args): _OCD._Mat__Vec4i_swiginit(self, _OCD.new__Mat__Vec4i(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__Vec4i___str__(self) __swig_destroy__ = _OCD.delete__Mat__Vec4i # Register _Mat__Vec4i in _OCD: _OCD._Mat__Vec4i_swigregister(_Mat__Vec4i) Mat4i = _Mat__Vec4i class _Mat__float(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__float_create(self, *args) def cross(self, m): return _OCD._Mat__float_cross(self, m) def row(self, y): return _OCD._Mat__float_row(self, y) def col(self, x): return _OCD._Mat__float_col(self, x) def diag(self, d=0): return _OCD._Mat__float_diag(self, d) def clone(self): return _OCD._Mat__float_clone(self) def elemSize(self): return _OCD._Mat__float_elemSize(self) def elemSize1(self): return _OCD._Mat__float_elemSize1(self) def type(self): return _OCD._Mat__float_type(self) def depth(self): return _OCD._Mat__float_depth(self) def channels(self): return _OCD._Mat__float_channels(self) def step1(self, i=0): return _OCD._Mat__float_step1(self, i) def stepT(self, i=0): return _OCD._Mat__float_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__float_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__float___call__(self, *args) def __init__(self, *args): _OCD._Mat__float_swiginit(self, _OCD.new__Mat__float(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__float___str__(self) __swig_destroy__ = _OCD.delete__Mat__float # Register _Mat__float in _OCD: _OCD._Mat__float_swigregister(_Mat__float) Mat1f = _Mat__float class _cv_numpy_sizeof_Vec2f(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_Vec2f_value def __init__(self): _OCD._cv_numpy_sizeof_Vec2f_swiginit(self, _OCD.new__cv_numpy_sizeof_Vec2f()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_Vec2f # Register _cv_numpy_sizeof_Vec2f in _OCD: _OCD._cv_numpy_sizeof_Vec2f_swigregister(_cv_numpy_sizeof_Vec2f) if _cv_numpy_sizeof_Vec2f.value == 1: _cv_numpy_typestr_map["Vec2f"] = "|" +"f" + "1" else: _cv_numpy_typestr_map["Vec2f"] = _cv_numpy_endianess +"f" + str(_cv_numpy_sizeof_Vec2f.value) class _Mat__Vec2f(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__Vec2f_create(self, *args) def cross(self, m): return _OCD._Mat__Vec2f_cross(self, m) def row(self, y): return _OCD._Mat__Vec2f_row(self, y) def col(self, x): return _OCD._Mat__Vec2f_col(self, x) def diag(self, d=0): return _OCD._Mat__Vec2f_diag(self, d) def clone(self): return _OCD._Mat__Vec2f_clone(self) def elemSize(self): return _OCD._Mat__Vec2f_elemSize(self) def elemSize1(self): return _OCD._Mat__Vec2f_elemSize1(self) def type(self): return _OCD._Mat__Vec2f_type(self) def depth(self): return _OCD._Mat__Vec2f_depth(self) def channels(self): return _OCD._Mat__Vec2f_channels(self) def step1(self, i=0): return _OCD._Mat__Vec2f_step1(self, i) def stepT(self, i=0): return _OCD._Mat__Vec2f_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__Vec2f_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__Vec2f___call__(self, *args) def __init__(self, *args): _OCD._Mat__Vec2f_swiginit(self, _OCD.new__Mat__Vec2f(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__Vec2f___str__(self) __swig_destroy__ = _OCD.delete__Mat__Vec2f # Register _Mat__Vec2f in _OCD: _OCD._Mat__Vec2f_swigregister(_Mat__Vec2f) Mat2f = _Mat__Vec2f class _cv_numpy_sizeof_Vec3f(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_Vec3f_value def __init__(self): _OCD._cv_numpy_sizeof_Vec3f_swiginit(self, _OCD.new__cv_numpy_sizeof_Vec3f()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_Vec3f # Register _cv_numpy_sizeof_Vec3f in _OCD: _OCD._cv_numpy_sizeof_Vec3f_swigregister(_cv_numpy_sizeof_Vec3f) if _cv_numpy_sizeof_Vec3f.value == 1: _cv_numpy_typestr_map["Vec3f"] = "|" +"f" + "1" else: _cv_numpy_typestr_map["Vec3f"] = _cv_numpy_endianess +"f" + str(_cv_numpy_sizeof_Vec3f.value) class _Mat__Vec3f(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__Vec3f_create(self, *args) def cross(self, m): return _OCD._Mat__Vec3f_cross(self, m) def row(self, y): return _OCD._Mat__Vec3f_row(self, y) def col(self, x): return _OCD._Mat__Vec3f_col(self, x) def diag(self, d=0): return _OCD._Mat__Vec3f_diag(self, d) def clone(self): return _OCD._Mat__Vec3f_clone(self) def elemSize(self): return _OCD._Mat__Vec3f_elemSize(self) def elemSize1(self): return _OCD._Mat__Vec3f_elemSize1(self) def type(self): return _OCD._Mat__Vec3f_type(self) def depth(self): return _OCD._Mat__Vec3f_depth(self) def channels(self): return _OCD._Mat__Vec3f_channels(self) def step1(self, i=0): return _OCD._Mat__Vec3f_step1(self, i) def stepT(self, i=0): return _OCD._Mat__Vec3f_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__Vec3f_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__Vec3f___call__(self, *args) def __init__(self, *args): _OCD._Mat__Vec3f_swiginit(self, _OCD.new__Mat__Vec3f(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__Vec3f___str__(self) __swig_destroy__ = _OCD.delete__Mat__Vec3f # Register _Mat__Vec3f in _OCD: _OCD._Mat__Vec3f_swigregister(_Mat__Vec3f) Mat3f = _Mat__Vec3f class _cv_numpy_sizeof_Vec4f(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_Vec4f_value def __init__(self): _OCD._cv_numpy_sizeof_Vec4f_swiginit(self, _OCD.new__cv_numpy_sizeof_Vec4f()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_Vec4f # Register _cv_numpy_sizeof_Vec4f in _OCD: _OCD._cv_numpy_sizeof_Vec4f_swigregister(_cv_numpy_sizeof_Vec4f) if _cv_numpy_sizeof_Vec4f.value == 1: _cv_numpy_typestr_map["Vec4f"] = "|" +"f" + "1" else: _cv_numpy_typestr_map["Vec4f"] = _cv_numpy_endianess +"f" + str(_cv_numpy_sizeof_Vec4f.value) class _Mat__Vec4f(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__Vec4f_create(self, *args) def cross(self, m): return _OCD._Mat__Vec4f_cross(self, m) def row(self, y): return _OCD._Mat__Vec4f_row(self, y) def col(self, x): return _OCD._Mat__Vec4f_col(self, x) def diag(self, d=0): return _OCD._Mat__Vec4f_diag(self, d) def clone(self): return _OCD._Mat__Vec4f_clone(self) def elemSize(self): return _OCD._Mat__Vec4f_elemSize(self) def elemSize1(self): return _OCD._Mat__Vec4f_elemSize1(self) def type(self): return _OCD._Mat__Vec4f_type(self) def depth(self): return _OCD._Mat__Vec4f_depth(self) def channels(self): return _OCD._Mat__Vec4f_channels(self) def step1(self, i=0): return _OCD._Mat__Vec4f_step1(self, i) def stepT(self, i=0): return _OCD._Mat__Vec4f_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__Vec4f_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__Vec4f___call__(self, *args) def __init__(self, *args): _OCD._Mat__Vec4f_swiginit(self, _OCD.new__Mat__Vec4f(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__Vec4f___str__(self) __swig_destroy__ = _OCD.delete__Mat__Vec4f # Register _Mat__Vec4f in _OCD: _OCD._Mat__Vec4f_swigregister(_Mat__Vec4f) Mat4f = _Mat__Vec4f class _Mat__double(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__double_create(self, *args) def cross(self, m): return _OCD._Mat__double_cross(self, m) def row(self, y): return _OCD._Mat__double_row(self, y) def col(self, x): return _OCD._Mat__double_col(self, x) def diag(self, d=0): return _OCD._Mat__double_diag(self, d) def clone(self): return _OCD._Mat__double_clone(self) def elemSize(self): return _OCD._Mat__double_elemSize(self) def elemSize1(self): return _OCD._Mat__double_elemSize1(self) def type(self): return _OCD._Mat__double_type(self) def depth(self): return _OCD._Mat__double_depth(self) def channels(self): return _OCD._Mat__double_channels(self) def step1(self, i=0): return _OCD._Mat__double_step1(self, i) def stepT(self, i=0): return _OCD._Mat__double_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__double_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__double___call__(self, *args) def __init__(self, *args): _OCD._Mat__double_swiginit(self, _OCD.new__Mat__double(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__double___str__(self) __swig_destroy__ = _OCD.delete__Mat__double # Register _Mat__double in _OCD: _OCD._Mat__double_swigregister(_Mat__double) Mat1d = _Mat__double class _cv_numpy_sizeof_Vec2d(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_Vec2d_value def __init__(self): _OCD._cv_numpy_sizeof_Vec2d_swiginit(self, _OCD.new__cv_numpy_sizeof_Vec2d()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_Vec2d # Register _cv_numpy_sizeof_Vec2d in _OCD: _OCD._cv_numpy_sizeof_Vec2d_swigregister(_cv_numpy_sizeof_Vec2d) if _cv_numpy_sizeof_Vec2d.value == 1: _cv_numpy_typestr_map["Vec2d"] = "|" +"f" + "1" else: _cv_numpy_typestr_map["Vec2d"] = _cv_numpy_endianess +"f" + str(_cv_numpy_sizeof_Vec2d.value) class _Mat__Vec2d(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__Vec2d_create(self, *args) def cross(self, m): return _OCD._Mat__Vec2d_cross(self, m) def row(self, y): return _OCD._Mat__Vec2d_row(self, y) def col(self, x): return _OCD._Mat__Vec2d_col(self, x) def diag(self, d=0): return _OCD._Mat__Vec2d_diag(self, d) def clone(self): return _OCD._Mat__Vec2d_clone(self) def elemSize(self): return _OCD._Mat__Vec2d_elemSize(self) def elemSize1(self): return _OCD._Mat__Vec2d_elemSize1(self) def type(self): return _OCD._Mat__Vec2d_type(self) def depth(self): return _OCD._Mat__Vec2d_depth(self) def channels(self): return _OCD._Mat__Vec2d_channels(self) def step1(self, i=0): return _OCD._Mat__Vec2d_step1(self, i) def stepT(self, i=0): return _OCD._Mat__Vec2d_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__Vec2d_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__Vec2d___call__(self, *args) def __init__(self, *args): _OCD._Mat__Vec2d_swiginit(self, _OCD.new__Mat__Vec2d(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__Vec2d___str__(self) __swig_destroy__ = _OCD.delete__Mat__Vec2d # Register _Mat__Vec2d in _OCD: _OCD._Mat__Vec2d_swigregister(_Mat__Vec2d) Mat2d = _Mat__Vec2d class _cv_numpy_sizeof_Vec3d(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_Vec3d_value def __init__(self): _OCD._cv_numpy_sizeof_Vec3d_swiginit(self, _OCD.new__cv_numpy_sizeof_Vec3d()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_Vec3d # Register _cv_numpy_sizeof_Vec3d in _OCD: _OCD._cv_numpy_sizeof_Vec3d_swigregister(_cv_numpy_sizeof_Vec3d) if _cv_numpy_sizeof_Vec3d.value == 1: _cv_numpy_typestr_map["Vec3d"] = "|" +"f" + "1" else: _cv_numpy_typestr_map["Vec3d"] = _cv_numpy_endianess +"f" + str(_cv_numpy_sizeof_Vec3d.value) class _Mat__Vec3d(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__Vec3d_create(self, *args) def cross(self, m): return _OCD._Mat__Vec3d_cross(self, m) def row(self, y): return _OCD._Mat__Vec3d_row(self, y) def col(self, x): return _OCD._Mat__Vec3d_col(self, x) def diag(self, d=0): return _OCD._Mat__Vec3d_diag(self, d) def clone(self): return _OCD._Mat__Vec3d_clone(self) def elemSize(self): return _OCD._Mat__Vec3d_elemSize(self) def elemSize1(self): return _OCD._Mat__Vec3d_elemSize1(self) def type(self): return _OCD._Mat__Vec3d_type(self) def depth(self): return _OCD._Mat__Vec3d_depth(self) def channels(self): return _OCD._Mat__Vec3d_channels(self) def step1(self, i=0): return _OCD._Mat__Vec3d_step1(self, i) def stepT(self, i=0): return _OCD._Mat__Vec3d_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__Vec3d_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__Vec3d___call__(self, *args) def __init__(self, *args): _OCD._Mat__Vec3d_swiginit(self, _OCD.new__Mat__Vec3d(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__Vec3d___str__(self) __swig_destroy__ = _OCD.delete__Mat__Vec3d # Register _Mat__Vec3d in _OCD: _OCD._Mat__Vec3d_swigregister(_Mat__Vec3d) Mat3d = _Mat__Vec3d class _cv_numpy_sizeof_Vec4d(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr value = _OCD._cv_numpy_sizeof_Vec4d_value def __init__(self): _OCD._cv_numpy_sizeof_Vec4d_swiginit(self, _OCD.new__cv_numpy_sizeof_Vec4d()) __swig_destroy__ = _OCD.delete__cv_numpy_sizeof_Vec4d # Register _cv_numpy_sizeof_Vec4d in _OCD: _OCD._cv_numpy_sizeof_Vec4d_swigregister(_cv_numpy_sizeof_Vec4d) if _cv_numpy_sizeof_Vec4d.value == 1: _cv_numpy_typestr_map["Vec4d"] = "|" +"f" + "1" else: _cv_numpy_typestr_map["Vec4d"] = _cv_numpy_endianess +"f" + str(_cv_numpy_sizeof_Vec4d.value) class _Mat__Vec4d(Mat): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def create(self, *args): return _OCD._Mat__Vec4d_create(self, *args) def cross(self, m): return _OCD._Mat__Vec4d_cross(self, m) def row(self, y): return _OCD._Mat__Vec4d_row(self, y) def col(self, x): return _OCD._Mat__Vec4d_col(self, x) def diag(self, d=0): return _OCD._Mat__Vec4d_diag(self, d) def clone(self): return _OCD._Mat__Vec4d_clone(self) def elemSize(self): return _OCD._Mat__Vec4d_elemSize(self) def elemSize1(self): return _OCD._Mat__Vec4d_elemSize1(self) def type(self): return _OCD._Mat__Vec4d_type(self) def depth(self): return _OCD._Mat__Vec4d_depth(self) def channels(self): return _OCD._Mat__Vec4d_channels(self) def step1(self, i=0): return _OCD._Mat__Vec4d_step1(self, i) def stepT(self, i=0): return _OCD._Mat__Vec4d_stepT(self, i) def adjustROI(self, dtop, dbottom, dleft, dright): return _OCD._Mat__Vec4d_adjustROI(self, dtop, dbottom, dleft, dright) def __call__(self, *args): return _OCD._Mat__Vec4d___call__(self, *args) def __init__(self, *args): _OCD._Mat__Vec4d_swiginit(self, _OCD.new__Mat__Vec4d(*args)) @classmethod def __check_channels_compatibility(cls, array): obj = cls() n_channel = obj.channels() if n_channel == 1: if len(array.shape) != 2: raise ValueError("{} expects a 2-dimensional numpy ndarray.".format(cls)) else: if len(array.shape) != 3: raise ValueError("{} expects a 3-dimensional numpy ndarray.".format(cls)) elif array.shape[2] != n_channel: raise ValueError("{} expects the last ndarray dimension to have a size of {}".format(cls, n_channel)) @classmethod def from_array(cls, array): import numpy as np array = np.asarray(array) if cls()._typestr() != array.__array_interface__['typestr']: raise ValueError("{} expects a {} datatype.".format(cls, cls()._typestr())) cls.__check_channels_compatibility(array) new_mat = cls(_mat__np_array_constructor(), array.shape[0], array.shape[1], array.__array_interface__['data'][0]) # Holds an internal reference to keep the image buffer alive new_mat._array = array return new_mat def __str__(self): return _OCD._Mat__Vec4d___str__(self) __swig_destroy__ = _OCD.delete__Mat__Vec4d # Register _Mat__Vec4d in _OCD: _OCD._Mat__Vec4d_swigregister(_Mat__Vec4d) Mat4d = _Mat__Vec4d class _Matx_float_1_2(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_float_1_2_rows cols = _OCD._Matx_float_1_2_cols channels = _OCD._Matx_float_1_2_channels shortdim = _OCD._Matx_float_1_2_shortdim @staticmethod def all(alpha): return _OCD._Matx_float_1_2_all(alpha) @staticmethod def zeros(): return _OCD._Matx_float_1_2_zeros() @staticmethod def ones(): return _OCD._Matx_float_1_2_ones() @staticmethod def eye(): return _OCD._Matx_float_1_2_eye() @staticmethod def randu(a, b): return _OCD._Matx_float_1_2_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_float_1_2_randn(a, b) def dot(self, v): return _OCD._Matx_float_1_2_dot(self, v) def ddot(self, v): return _OCD._Matx_float_1_2_ddot(self, v) def t(self): return _OCD._Matx_float_1_2_t(self) def mul(self, a): return _OCD._Matx_float_1_2_mul(self, a) def div(self, a): return _OCD._Matx_float_1_2_div(self, a) def __call__(self, i, j): return _OCD._Matx_float_1_2___call__(self, i, j) val = property(_OCD._Matx_float_1_2_val_get, _OCD._Matx_float_1_2_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_float_1_2_swiginit(self, _OCD.new__Matx_float_1_2(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_float_1_2___str__(self) __swig_destroy__ = _OCD.delete__Matx_float_1_2 # Register _Matx_float_1_2 in _OCD: _OCD._Matx_float_1_2_swigregister(_Matx_float_1_2) def _Matx_float_1_2_all(alpha): return _OCD._Matx_float_1_2_all(alpha) def _Matx_float_1_2_zeros(): return _OCD._Matx_float_1_2_zeros() def _Matx_float_1_2_ones(): return _OCD._Matx_float_1_2_ones() def _Matx_float_1_2_eye(): return _OCD._Matx_float_1_2_eye() def _Matx_float_1_2_randu(a, b): return _OCD._Matx_float_1_2_randu(a, b) def _Matx_float_1_2_randn(a, b): return _OCD._Matx_float_1_2_randn(a, b) Matx12f = _Matx_float_1_2 class _Matx_double_1_2(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_double_1_2_rows cols = _OCD._Matx_double_1_2_cols channels = _OCD._Matx_double_1_2_channels shortdim = _OCD._Matx_double_1_2_shortdim @staticmethod def all(alpha): return _OCD._Matx_double_1_2_all(alpha) @staticmethod def zeros(): return _OCD._Matx_double_1_2_zeros() @staticmethod def ones(): return _OCD._Matx_double_1_2_ones() @staticmethod def eye(): return _OCD._Matx_double_1_2_eye() @staticmethod def randu(a, b): return _OCD._Matx_double_1_2_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_double_1_2_randn(a, b) def dot(self, v): return _OCD._Matx_double_1_2_dot(self, v) def ddot(self, v): return _OCD._Matx_double_1_2_ddot(self, v) def t(self): return _OCD._Matx_double_1_2_t(self) def mul(self, a): return _OCD._Matx_double_1_2_mul(self, a) def div(self, a): return _OCD._Matx_double_1_2_div(self, a) def __call__(self, i, j): return _OCD._Matx_double_1_2___call__(self, i, j) val = property(_OCD._Matx_double_1_2_val_get, _OCD._Matx_double_1_2_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_double_1_2_swiginit(self, _OCD.new__Matx_double_1_2(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_double_1_2___str__(self) __swig_destroy__ = _OCD.delete__Matx_double_1_2 # Register _Matx_double_1_2 in _OCD: _OCD._Matx_double_1_2_swigregister(_Matx_double_1_2) def _Matx_double_1_2_all(alpha): return _OCD._Matx_double_1_2_all(alpha) def _Matx_double_1_2_zeros(): return _OCD._Matx_double_1_2_zeros() def _Matx_double_1_2_ones(): return _OCD._Matx_double_1_2_ones() def _Matx_double_1_2_eye(): return _OCD._Matx_double_1_2_eye() def _Matx_double_1_2_randu(a, b): return _OCD._Matx_double_1_2_randu(a, b) def _Matx_double_1_2_randn(a, b): return _OCD._Matx_double_1_2_randn(a, b) Matx12d = _Matx_double_1_2 class _Matx_float_1_3(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_float_1_3_rows cols = _OCD._Matx_float_1_3_cols channels = _OCD._Matx_float_1_3_channels shortdim = _OCD._Matx_float_1_3_shortdim @staticmethod def all(alpha): return _OCD._Matx_float_1_3_all(alpha) @staticmethod def zeros(): return _OCD._Matx_float_1_3_zeros() @staticmethod def ones(): return _OCD._Matx_float_1_3_ones() @staticmethod def eye(): return _OCD._Matx_float_1_3_eye() @staticmethod def randu(a, b): return _OCD._Matx_float_1_3_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_float_1_3_randn(a, b) def dot(self, v): return _OCD._Matx_float_1_3_dot(self, v) def ddot(self, v): return _OCD._Matx_float_1_3_ddot(self, v) def t(self): return _OCD._Matx_float_1_3_t(self) def mul(self, a): return _OCD._Matx_float_1_3_mul(self, a) def div(self, a): return _OCD._Matx_float_1_3_div(self, a) def __call__(self, i, j): return _OCD._Matx_float_1_3___call__(self, i, j) val = property(_OCD._Matx_float_1_3_val_get, _OCD._Matx_float_1_3_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_float_1_3_swiginit(self, _OCD.new__Matx_float_1_3(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_float_1_3___str__(self) __swig_destroy__ = _OCD.delete__Matx_float_1_3 # Register _Matx_float_1_3 in _OCD: _OCD._Matx_float_1_3_swigregister(_Matx_float_1_3) def _Matx_float_1_3_all(alpha): return _OCD._Matx_float_1_3_all(alpha) def _Matx_float_1_3_zeros(): return _OCD._Matx_float_1_3_zeros() def _Matx_float_1_3_ones(): return _OCD._Matx_float_1_3_ones() def _Matx_float_1_3_eye(): return _OCD._Matx_float_1_3_eye() def _Matx_float_1_3_randu(a, b): return _OCD._Matx_float_1_3_randu(a, b) def _Matx_float_1_3_randn(a, b): return _OCD._Matx_float_1_3_randn(a, b) Matx13f = _Matx_float_1_3 class _Matx_double_1_3(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_double_1_3_rows cols = _OCD._Matx_double_1_3_cols channels = _OCD._Matx_double_1_3_channels shortdim = _OCD._Matx_double_1_3_shortdim @staticmethod def all(alpha): return _OCD._Matx_double_1_3_all(alpha) @staticmethod def zeros(): return _OCD._Matx_double_1_3_zeros() @staticmethod def ones(): return _OCD._Matx_double_1_3_ones() @staticmethod def eye(): return _OCD._Matx_double_1_3_eye() @staticmethod def randu(a, b): return _OCD._Matx_double_1_3_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_double_1_3_randn(a, b) def dot(self, v): return _OCD._Matx_double_1_3_dot(self, v) def ddot(self, v): return _OCD._Matx_double_1_3_ddot(self, v) def t(self): return _OCD._Matx_double_1_3_t(self) def mul(self, a): return _OCD._Matx_double_1_3_mul(self, a) def div(self, a): return _OCD._Matx_double_1_3_div(self, a) def __call__(self, i, j): return _OCD._Matx_double_1_3___call__(self, i, j) val = property(_OCD._Matx_double_1_3_val_get, _OCD._Matx_double_1_3_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_double_1_3_swiginit(self, _OCD.new__Matx_double_1_3(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_double_1_3___str__(self) __swig_destroy__ = _OCD.delete__Matx_double_1_3 # Register _Matx_double_1_3 in _OCD: _OCD._Matx_double_1_3_swigregister(_Matx_double_1_3) def _Matx_double_1_3_all(alpha): return _OCD._Matx_double_1_3_all(alpha) def _Matx_double_1_3_zeros(): return _OCD._Matx_double_1_3_zeros() def _Matx_double_1_3_ones(): return _OCD._Matx_double_1_3_ones() def _Matx_double_1_3_eye(): return _OCD._Matx_double_1_3_eye() def _Matx_double_1_3_randu(a, b): return _OCD._Matx_double_1_3_randu(a, b) def _Matx_double_1_3_randn(a, b): return _OCD._Matx_double_1_3_randn(a, b) Matx13d = _Matx_double_1_3 class _Matx_float_1_4(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_float_1_4_rows cols = _OCD._Matx_float_1_4_cols channels = _OCD._Matx_float_1_4_channels shortdim = _OCD._Matx_float_1_4_shortdim @staticmethod def all(alpha): return _OCD._Matx_float_1_4_all(alpha) @staticmethod def zeros(): return _OCD._Matx_float_1_4_zeros() @staticmethod def ones(): return _OCD._Matx_float_1_4_ones() @staticmethod def eye(): return _OCD._Matx_float_1_4_eye() @staticmethod def randu(a, b): return _OCD._Matx_float_1_4_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_float_1_4_randn(a, b) def dot(self, v): return _OCD._Matx_float_1_4_dot(self, v) def ddot(self, v): return _OCD._Matx_float_1_4_ddot(self, v) def t(self): return _OCD._Matx_float_1_4_t(self) def mul(self, a): return _OCD._Matx_float_1_4_mul(self, a) def div(self, a): return _OCD._Matx_float_1_4_div(self, a) def __call__(self, i, j): return _OCD._Matx_float_1_4___call__(self, i, j) val = property(_OCD._Matx_float_1_4_val_get, _OCD._Matx_float_1_4_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_float_1_4_swiginit(self, _OCD.new__Matx_float_1_4(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_float_1_4___str__(self) __swig_destroy__ = _OCD.delete__Matx_float_1_4 # Register _Matx_float_1_4 in _OCD: _OCD._Matx_float_1_4_swigregister(_Matx_float_1_4) def _Matx_float_1_4_all(alpha): return _OCD._Matx_float_1_4_all(alpha) def _Matx_float_1_4_zeros(): return _OCD._Matx_float_1_4_zeros() def _Matx_float_1_4_ones(): return _OCD._Matx_float_1_4_ones() def _Matx_float_1_4_eye(): return _OCD._Matx_float_1_4_eye() def _Matx_float_1_4_randu(a, b): return _OCD._Matx_float_1_4_randu(a, b) def _Matx_float_1_4_randn(a, b): return _OCD._Matx_float_1_4_randn(a, b) Matx14f = _Matx_float_1_4 class _Matx_double_1_4(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_double_1_4_rows cols = _OCD._Matx_double_1_4_cols channels = _OCD._Matx_double_1_4_channels shortdim = _OCD._Matx_double_1_4_shortdim @staticmethod def all(alpha): return _OCD._Matx_double_1_4_all(alpha) @staticmethod def zeros(): return _OCD._Matx_double_1_4_zeros() @staticmethod def ones(): return _OCD._Matx_double_1_4_ones() @staticmethod def eye(): return _OCD._Matx_double_1_4_eye() @staticmethod def randu(a, b): return _OCD._Matx_double_1_4_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_double_1_4_randn(a, b) def dot(self, v): return _OCD._Matx_double_1_4_dot(self, v) def ddot(self, v): return _OCD._Matx_double_1_4_ddot(self, v) def t(self): return _OCD._Matx_double_1_4_t(self) def mul(self, a): return _OCD._Matx_double_1_4_mul(self, a) def div(self, a): return _OCD._Matx_double_1_4_div(self, a) def __call__(self, i, j): return _OCD._Matx_double_1_4___call__(self, i, j) val = property(_OCD._Matx_double_1_4_val_get, _OCD._Matx_double_1_4_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_double_1_4_swiginit(self, _OCD.new__Matx_double_1_4(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_double_1_4___str__(self) __swig_destroy__ = _OCD.delete__Matx_double_1_4 # Register _Matx_double_1_4 in _OCD: _OCD._Matx_double_1_4_swigregister(_Matx_double_1_4) def _Matx_double_1_4_all(alpha): return _OCD._Matx_double_1_4_all(alpha) def _Matx_double_1_4_zeros(): return _OCD._Matx_double_1_4_zeros() def _Matx_double_1_4_ones(): return _OCD._Matx_double_1_4_ones() def _Matx_double_1_4_eye(): return _OCD._Matx_double_1_4_eye() def _Matx_double_1_4_randu(a, b): return _OCD._Matx_double_1_4_randu(a, b) def _Matx_double_1_4_randn(a, b): return _OCD._Matx_double_1_4_randn(a, b) Matx14d = _Matx_double_1_4 class _Matx_float_1_6(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_float_1_6_rows cols = _OCD._Matx_float_1_6_cols channels = _OCD._Matx_float_1_6_channels shortdim = _OCD._Matx_float_1_6_shortdim @staticmethod def all(alpha): return _OCD._Matx_float_1_6_all(alpha) @staticmethod def zeros(): return _OCD._Matx_float_1_6_zeros() @staticmethod def ones(): return _OCD._Matx_float_1_6_ones() @staticmethod def eye(): return _OCD._Matx_float_1_6_eye() @staticmethod def randu(a, b): return _OCD._Matx_float_1_6_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_float_1_6_randn(a, b) def dot(self, v): return _OCD._Matx_float_1_6_dot(self, v) def ddot(self, v): return _OCD._Matx_float_1_6_ddot(self, v) def t(self): return _OCD._Matx_float_1_6_t(self) def mul(self, a): return _OCD._Matx_float_1_6_mul(self, a) def div(self, a): return _OCD._Matx_float_1_6_div(self, a) def __call__(self, i, j): return _OCD._Matx_float_1_6___call__(self, i, j) val = property(_OCD._Matx_float_1_6_val_get, _OCD._Matx_float_1_6_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_float_1_6_swiginit(self, _OCD.new__Matx_float_1_6(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_float_1_6___str__(self) __swig_destroy__ = _OCD.delete__Matx_float_1_6 # Register _Matx_float_1_6 in _OCD: _OCD._Matx_float_1_6_swigregister(_Matx_float_1_6) def _Matx_float_1_6_all(alpha): return _OCD._Matx_float_1_6_all(alpha) def _Matx_float_1_6_zeros(): return _OCD._Matx_float_1_6_zeros() def _Matx_float_1_6_ones(): return _OCD._Matx_float_1_6_ones() def _Matx_float_1_6_eye(): return _OCD._Matx_float_1_6_eye() def _Matx_float_1_6_randu(a, b): return _OCD._Matx_float_1_6_randu(a, b) def _Matx_float_1_6_randn(a, b): return _OCD._Matx_float_1_6_randn(a, b) Matx16f = _Matx_float_1_6 class _Matx_double_1_6(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_double_1_6_rows cols = _OCD._Matx_double_1_6_cols channels = _OCD._Matx_double_1_6_channels shortdim = _OCD._Matx_double_1_6_shortdim @staticmethod def all(alpha): return _OCD._Matx_double_1_6_all(alpha) @staticmethod def zeros(): return _OCD._Matx_double_1_6_zeros() @staticmethod def ones(): return _OCD._Matx_double_1_6_ones() @staticmethod def eye(): return _OCD._Matx_double_1_6_eye() @staticmethod def randu(a, b): return _OCD._Matx_double_1_6_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_double_1_6_randn(a, b) def dot(self, v): return _OCD._Matx_double_1_6_dot(self, v) def ddot(self, v): return _OCD._Matx_double_1_6_ddot(self, v) def t(self): return _OCD._Matx_double_1_6_t(self) def mul(self, a): return _OCD._Matx_double_1_6_mul(self, a) def div(self, a): return _OCD._Matx_double_1_6_div(self, a) def __call__(self, i, j): return _OCD._Matx_double_1_6___call__(self, i, j) val = property(_OCD._Matx_double_1_6_val_get, _OCD._Matx_double_1_6_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_double_1_6_swiginit(self, _OCD.new__Matx_double_1_6(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_double_1_6___str__(self) __swig_destroy__ = _OCD.delete__Matx_double_1_6 # Register _Matx_double_1_6 in _OCD: _OCD._Matx_double_1_6_swigregister(_Matx_double_1_6) def _Matx_double_1_6_all(alpha): return _OCD._Matx_double_1_6_all(alpha) def _Matx_double_1_6_zeros(): return _OCD._Matx_double_1_6_zeros() def _Matx_double_1_6_ones(): return _OCD._Matx_double_1_6_ones() def _Matx_double_1_6_eye(): return _OCD._Matx_double_1_6_eye() def _Matx_double_1_6_randu(a, b): return _OCD._Matx_double_1_6_randu(a, b) def _Matx_double_1_6_randn(a, b): return _OCD._Matx_double_1_6_randn(a, b) Matx16d = _Matx_double_1_6 class _Matx_float_2_2(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_float_2_2_rows cols = _OCD._Matx_float_2_2_cols channels = _OCD._Matx_float_2_2_channels shortdim = _OCD._Matx_float_2_2_shortdim @staticmethod def all(alpha): return _OCD._Matx_float_2_2_all(alpha) @staticmethod def zeros(): return _OCD._Matx_float_2_2_zeros() @staticmethod def ones(): return _OCD._Matx_float_2_2_ones() @staticmethod def eye(): return _OCD._Matx_float_2_2_eye() @staticmethod def randu(a, b): return _OCD._Matx_float_2_2_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_float_2_2_randn(a, b) def dot(self, v): return _OCD._Matx_float_2_2_dot(self, v) def ddot(self, v): return _OCD._Matx_float_2_2_ddot(self, v) def t(self): return _OCD._Matx_float_2_2_t(self) def mul(self, a): return _OCD._Matx_float_2_2_mul(self, a) def div(self, a): return _OCD._Matx_float_2_2_div(self, a) def __call__(self, i, j): return _OCD._Matx_float_2_2___call__(self, i, j) val = property(_OCD._Matx_float_2_2_val_get, _OCD._Matx_float_2_2_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_float_2_2_swiginit(self, _OCD.new__Matx_float_2_2(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_float_2_2___str__(self) __swig_destroy__ = _OCD.delete__Matx_float_2_2 # Register _Matx_float_2_2 in _OCD: _OCD._Matx_float_2_2_swigregister(_Matx_float_2_2) def _Matx_float_2_2_all(alpha): return _OCD._Matx_float_2_2_all(alpha) def _Matx_float_2_2_zeros(): return _OCD._Matx_float_2_2_zeros() def _Matx_float_2_2_ones(): return _OCD._Matx_float_2_2_ones() def _Matx_float_2_2_eye(): return _OCD._Matx_float_2_2_eye() def _Matx_float_2_2_randu(a, b): return _OCD._Matx_float_2_2_randu(a, b) def _Matx_float_2_2_randn(a, b): return _OCD._Matx_float_2_2_randn(a, b) Matx22f = _Matx_float_2_2 class _Matx_double_2_2(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_double_2_2_rows cols = _OCD._Matx_double_2_2_cols channels = _OCD._Matx_double_2_2_channels shortdim = _OCD._Matx_double_2_2_shortdim @staticmethod def all(alpha): return _OCD._Matx_double_2_2_all(alpha) @staticmethod def zeros(): return _OCD._Matx_double_2_2_zeros() @staticmethod def ones(): return _OCD._Matx_double_2_2_ones() @staticmethod def eye(): return _OCD._Matx_double_2_2_eye() @staticmethod def randu(a, b): return _OCD._Matx_double_2_2_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_double_2_2_randn(a, b) def dot(self, v): return _OCD._Matx_double_2_2_dot(self, v) def ddot(self, v): return _OCD._Matx_double_2_2_ddot(self, v) def t(self): return _OCD._Matx_double_2_2_t(self) def mul(self, a): return _OCD._Matx_double_2_2_mul(self, a) def div(self, a): return _OCD._Matx_double_2_2_div(self, a) def __call__(self, i, j): return _OCD._Matx_double_2_2___call__(self, i, j) val = property(_OCD._Matx_double_2_2_val_get, _OCD._Matx_double_2_2_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_double_2_2_swiginit(self, _OCD.new__Matx_double_2_2(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_double_2_2___str__(self) __swig_destroy__ = _OCD.delete__Matx_double_2_2 # Register _Matx_double_2_2 in _OCD: _OCD._Matx_double_2_2_swigregister(_Matx_double_2_2) def _Matx_double_2_2_all(alpha): return _OCD._Matx_double_2_2_all(alpha) def _Matx_double_2_2_zeros(): return _OCD._Matx_double_2_2_zeros() def _Matx_double_2_2_ones(): return _OCD._Matx_double_2_2_ones() def _Matx_double_2_2_eye(): return _OCD._Matx_double_2_2_eye() def _Matx_double_2_2_randu(a, b): return _OCD._Matx_double_2_2_randu(a, b) def _Matx_double_2_2_randn(a, b): return _OCD._Matx_double_2_2_randn(a, b) Matx22d = _Matx_double_2_2 class _Matx_float_2_3(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_float_2_3_rows cols = _OCD._Matx_float_2_3_cols channels = _OCD._Matx_float_2_3_channels shortdim = _OCD._Matx_float_2_3_shortdim @staticmethod def all(alpha): return _OCD._Matx_float_2_3_all(alpha) @staticmethod def zeros(): return _OCD._Matx_float_2_3_zeros() @staticmethod def ones(): return _OCD._Matx_float_2_3_ones() @staticmethod def eye(): return _OCD._Matx_float_2_3_eye() @staticmethod def randu(a, b): return _OCD._Matx_float_2_3_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_float_2_3_randn(a, b) def dot(self, v): return _OCD._Matx_float_2_3_dot(self, v) def ddot(self, v): return _OCD._Matx_float_2_3_ddot(self, v) def t(self): return _OCD._Matx_float_2_3_t(self) def mul(self, a): return _OCD._Matx_float_2_3_mul(self, a) def div(self, a): return _OCD._Matx_float_2_3_div(self, a) def __call__(self, i, j): return _OCD._Matx_float_2_3___call__(self, i, j) val = property(_OCD._Matx_float_2_3_val_get, _OCD._Matx_float_2_3_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_float_2_3_swiginit(self, _OCD.new__Matx_float_2_3(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_float_2_3___str__(self) __swig_destroy__ = _OCD.delete__Matx_float_2_3 # Register _Matx_float_2_3 in _OCD: _OCD._Matx_float_2_3_swigregister(_Matx_float_2_3) def _Matx_float_2_3_all(alpha): return _OCD._Matx_float_2_3_all(alpha) def _Matx_float_2_3_zeros(): return _OCD._Matx_float_2_3_zeros() def _Matx_float_2_3_ones(): return _OCD._Matx_float_2_3_ones() def _Matx_float_2_3_eye(): return _OCD._Matx_float_2_3_eye() def _Matx_float_2_3_randu(a, b): return _OCD._Matx_float_2_3_randu(a, b) def _Matx_float_2_3_randn(a, b): return _OCD._Matx_float_2_3_randn(a, b) Matx23f = _Matx_float_2_3 class _Matx_double_2_3(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_double_2_3_rows cols = _OCD._Matx_double_2_3_cols channels = _OCD._Matx_double_2_3_channels shortdim = _OCD._Matx_double_2_3_shortdim @staticmethod def all(alpha): return _OCD._Matx_double_2_3_all(alpha) @staticmethod def zeros(): return _OCD._Matx_double_2_3_zeros() @staticmethod def ones(): return _OCD._Matx_double_2_3_ones() @staticmethod def eye(): return _OCD._Matx_double_2_3_eye() @staticmethod def randu(a, b): return _OCD._Matx_double_2_3_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_double_2_3_randn(a, b) def dot(self, v): return _OCD._Matx_double_2_3_dot(self, v) def ddot(self, v): return _OCD._Matx_double_2_3_ddot(self, v) def t(self): return _OCD._Matx_double_2_3_t(self) def mul(self, a): return _OCD._Matx_double_2_3_mul(self, a) def div(self, a): return _OCD._Matx_double_2_3_div(self, a) def __call__(self, i, j): return _OCD._Matx_double_2_3___call__(self, i, j) val = property(_OCD._Matx_double_2_3_val_get, _OCD._Matx_double_2_3_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_double_2_3_swiginit(self, _OCD.new__Matx_double_2_3(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_double_2_3___str__(self) __swig_destroy__ = _OCD.delete__Matx_double_2_3 # Register _Matx_double_2_3 in _OCD: _OCD._Matx_double_2_3_swigregister(_Matx_double_2_3) def _Matx_double_2_3_all(alpha): return _OCD._Matx_double_2_3_all(alpha) def _Matx_double_2_3_zeros(): return _OCD._Matx_double_2_3_zeros() def _Matx_double_2_3_ones(): return _OCD._Matx_double_2_3_ones() def _Matx_double_2_3_eye(): return _OCD._Matx_double_2_3_eye() def _Matx_double_2_3_randu(a, b): return _OCD._Matx_double_2_3_randu(a, b) def _Matx_double_2_3_randn(a, b): return _OCD._Matx_double_2_3_randn(a, b) Matx23d = _Matx_double_2_3 class _Matx_float_3_2(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_float_3_2_rows cols = _OCD._Matx_float_3_2_cols channels = _OCD._Matx_float_3_2_channels shortdim = _OCD._Matx_float_3_2_shortdim @staticmethod def all(alpha): return _OCD._Matx_float_3_2_all(alpha) @staticmethod def zeros(): return _OCD._Matx_float_3_2_zeros() @staticmethod def ones(): return _OCD._Matx_float_3_2_ones() @staticmethod def eye(): return _OCD._Matx_float_3_2_eye() @staticmethod def randu(a, b): return _OCD._Matx_float_3_2_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_float_3_2_randn(a, b) def dot(self, v): return _OCD._Matx_float_3_2_dot(self, v) def ddot(self, v): return _OCD._Matx_float_3_2_ddot(self, v) def t(self): return _OCD._Matx_float_3_2_t(self) def mul(self, a): return _OCD._Matx_float_3_2_mul(self, a) def div(self, a): return _OCD._Matx_float_3_2_div(self, a) def __call__(self, i, j): return _OCD._Matx_float_3_2___call__(self, i, j) val = property(_OCD._Matx_float_3_2_val_get, _OCD._Matx_float_3_2_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_float_3_2_swiginit(self, _OCD.new__Matx_float_3_2(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_float_3_2___str__(self) __swig_destroy__ = _OCD.delete__Matx_float_3_2 # Register _Matx_float_3_2 in _OCD: _OCD._Matx_float_3_2_swigregister(_Matx_float_3_2) def _Matx_float_3_2_all(alpha): return _OCD._Matx_float_3_2_all(alpha) def _Matx_float_3_2_zeros(): return _OCD._Matx_float_3_2_zeros() def _Matx_float_3_2_ones(): return _OCD._Matx_float_3_2_ones() def _Matx_float_3_2_eye(): return _OCD._Matx_float_3_2_eye() def _Matx_float_3_2_randu(a, b): return _OCD._Matx_float_3_2_randu(a, b) def _Matx_float_3_2_randn(a, b): return _OCD._Matx_float_3_2_randn(a, b) Matx32f = _Matx_float_3_2 class _Matx_double_3_2(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_double_3_2_rows cols = _OCD._Matx_double_3_2_cols channels = _OCD._Matx_double_3_2_channels shortdim = _OCD._Matx_double_3_2_shortdim @staticmethod def all(alpha): return _OCD._Matx_double_3_2_all(alpha) @staticmethod def zeros(): return _OCD._Matx_double_3_2_zeros() @staticmethod def ones(): return _OCD._Matx_double_3_2_ones() @staticmethod def eye(): return _OCD._Matx_double_3_2_eye() @staticmethod def randu(a, b): return _OCD._Matx_double_3_2_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_double_3_2_randn(a, b) def dot(self, v): return _OCD._Matx_double_3_2_dot(self, v) def ddot(self, v): return _OCD._Matx_double_3_2_ddot(self, v) def t(self): return _OCD._Matx_double_3_2_t(self) def mul(self, a): return _OCD._Matx_double_3_2_mul(self, a) def div(self, a): return _OCD._Matx_double_3_2_div(self, a) def __call__(self, i, j): return _OCD._Matx_double_3_2___call__(self, i, j) val = property(_OCD._Matx_double_3_2_val_get, _OCD._Matx_double_3_2_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_double_3_2_swiginit(self, _OCD.new__Matx_double_3_2(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_double_3_2___str__(self) __swig_destroy__ = _OCD.delete__Matx_double_3_2 # Register _Matx_double_3_2 in _OCD: _OCD._Matx_double_3_2_swigregister(_Matx_double_3_2) def _Matx_double_3_2_all(alpha): return _OCD._Matx_double_3_2_all(alpha) def _Matx_double_3_2_zeros(): return _OCD._Matx_double_3_2_zeros() def _Matx_double_3_2_ones(): return _OCD._Matx_double_3_2_ones() def _Matx_double_3_2_eye(): return _OCD._Matx_double_3_2_eye() def _Matx_double_3_2_randu(a, b): return _OCD._Matx_double_3_2_randu(a, b) def _Matx_double_3_2_randn(a, b): return _OCD._Matx_double_3_2_randn(a, b) Matx32d = _Matx_double_3_2 class _Matx_float_3_3(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_float_3_3_rows cols = _OCD._Matx_float_3_3_cols channels = _OCD._Matx_float_3_3_channels shortdim = _OCD._Matx_float_3_3_shortdim @staticmethod def all(alpha): return _OCD._Matx_float_3_3_all(alpha) @staticmethod def zeros(): return _OCD._Matx_float_3_3_zeros() @staticmethod def ones(): return _OCD._Matx_float_3_3_ones() @staticmethod def eye(): return _OCD._Matx_float_3_3_eye() @staticmethod def randu(a, b): return _OCD._Matx_float_3_3_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_float_3_3_randn(a, b) def dot(self, v): return _OCD._Matx_float_3_3_dot(self, v) def ddot(self, v): return _OCD._Matx_float_3_3_ddot(self, v) def t(self): return _OCD._Matx_float_3_3_t(self) def mul(self, a): return _OCD._Matx_float_3_3_mul(self, a) def div(self, a): return _OCD._Matx_float_3_3_div(self, a) def __call__(self, i, j): return _OCD._Matx_float_3_3___call__(self, i, j) val = property(_OCD._Matx_float_3_3_val_get, _OCD._Matx_float_3_3_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_float_3_3_swiginit(self, _OCD.new__Matx_float_3_3(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_float_3_3___str__(self) __swig_destroy__ = _OCD.delete__Matx_float_3_3 # Register _Matx_float_3_3 in _OCD: _OCD._Matx_float_3_3_swigregister(_Matx_float_3_3) def _Matx_float_3_3_all(alpha): return _OCD._Matx_float_3_3_all(alpha) def _Matx_float_3_3_zeros(): return _OCD._Matx_float_3_3_zeros() def _Matx_float_3_3_ones(): return _OCD._Matx_float_3_3_ones() def _Matx_float_3_3_eye(): return _OCD._Matx_float_3_3_eye() def _Matx_float_3_3_randu(a, b): return _OCD._Matx_float_3_3_randu(a, b) def _Matx_float_3_3_randn(a, b): return _OCD._Matx_float_3_3_randn(a, b) Matx33f = _Matx_float_3_3 class _Matx_double_3_3(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_double_3_3_rows cols = _OCD._Matx_double_3_3_cols channels = _OCD._Matx_double_3_3_channels shortdim = _OCD._Matx_double_3_3_shortdim @staticmethod def all(alpha): return _OCD._Matx_double_3_3_all(alpha) @staticmethod def zeros(): return _OCD._Matx_double_3_3_zeros() @staticmethod def ones(): return _OCD._Matx_double_3_3_ones() @staticmethod def eye(): return _OCD._Matx_double_3_3_eye() @staticmethod def randu(a, b): return _OCD._Matx_double_3_3_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_double_3_3_randn(a, b) def dot(self, v): return _OCD._Matx_double_3_3_dot(self, v) def ddot(self, v): return _OCD._Matx_double_3_3_ddot(self, v) def t(self): return _OCD._Matx_double_3_3_t(self) def mul(self, a): return _OCD._Matx_double_3_3_mul(self, a) def div(self, a): return _OCD._Matx_double_3_3_div(self, a) def __call__(self, i, j): return _OCD._Matx_double_3_3___call__(self, i, j) val = property(_OCD._Matx_double_3_3_val_get, _OCD._Matx_double_3_3_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_double_3_3_swiginit(self, _OCD.new__Matx_double_3_3(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_double_3_3___str__(self) __swig_destroy__ = _OCD.delete__Matx_double_3_3 # Register _Matx_double_3_3 in _OCD: _OCD._Matx_double_3_3_swigregister(_Matx_double_3_3) def _Matx_double_3_3_all(alpha): return _OCD._Matx_double_3_3_all(alpha) def _Matx_double_3_3_zeros(): return _OCD._Matx_double_3_3_zeros() def _Matx_double_3_3_ones(): return _OCD._Matx_double_3_3_ones() def _Matx_double_3_3_eye(): return _OCD._Matx_double_3_3_eye() def _Matx_double_3_3_randu(a, b): return _OCD._Matx_double_3_3_randu(a, b) def _Matx_double_3_3_randn(a, b): return _OCD._Matx_double_3_3_randn(a, b) Matx33d = _Matx_double_3_3 class _Matx_float_3_4(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_float_3_4_rows cols = _OCD._Matx_float_3_4_cols channels = _OCD._Matx_float_3_4_channels shortdim = _OCD._Matx_float_3_4_shortdim @staticmethod def all(alpha): return _OCD._Matx_float_3_4_all(alpha) @staticmethod def zeros(): return _OCD._Matx_float_3_4_zeros() @staticmethod def ones(): return _OCD._Matx_float_3_4_ones() @staticmethod def eye(): return _OCD._Matx_float_3_4_eye() @staticmethod def randu(a, b): return _OCD._Matx_float_3_4_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_float_3_4_randn(a, b) def dot(self, v): return _OCD._Matx_float_3_4_dot(self, v) def ddot(self, v): return _OCD._Matx_float_3_4_ddot(self, v) def t(self): return _OCD._Matx_float_3_4_t(self) def mul(self, a): return _OCD._Matx_float_3_4_mul(self, a) def div(self, a): return _OCD._Matx_float_3_4_div(self, a) def __call__(self, i, j): return _OCD._Matx_float_3_4___call__(self, i, j) val = property(_OCD._Matx_float_3_4_val_get, _OCD._Matx_float_3_4_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_float_3_4_swiginit(self, _OCD.new__Matx_float_3_4(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_float_3_4___str__(self) __swig_destroy__ = _OCD.delete__Matx_float_3_4 # Register _Matx_float_3_4 in _OCD: _OCD._Matx_float_3_4_swigregister(_Matx_float_3_4) def _Matx_float_3_4_all(alpha): return _OCD._Matx_float_3_4_all(alpha) def _Matx_float_3_4_zeros(): return _OCD._Matx_float_3_4_zeros() def _Matx_float_3_4_ones(): return _OCD._Matx_float_3_4_ones() def _Matx_float_3_4_eye(): return _OCD._Matx_float_3_4_eye() def _Matx_float_3_4_randu(a, b): return _OCD._Matx_float_3_4_randu(a, b) def _Matx_float_3_4_randn(a, b): return _OCD._Matx_float_3_4_randn(a, b) Matx34f = _Matx_float_3_4 class _Matx_double_3_4(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_double_3_4_rows cols = _OCD._Matx_double_3_4_cols channels = _OCD._Matx_double_3_4_channels shortdim = _OCD._Matx_double_3_4_shortdim @staticmethod def all(alpha): return _OCD._Matx_double_3_4_all(alpha) @staticmethod def zeros(): return _OCD._Matx_double_3_4_zeros() @staticmethod def ones(): return _OCD._Matx_double_3_4_ones() @staticmethod def eye(): return _OCD._Matx_double_3_4_eye() @staticmethod def randu(a, b): return _OCD._Matx_double_3_4_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_double_3_4_randn(a, b) def dot(self, v): return _OCD._Matx_double_3_4_dot(self, v) def ddot(self, v): return _OCD._Matx_double_3_4_ddot(self, v) def t(self): return _OCD._Matx_double_3_4_t(self) def mul(self, a): return _OCD._Matx_double_3_4_mul(self, a) def div(self, a): return _OCD._Matx_double_3_4_div(self, a) def __call__(self, i, j): return _OCD._Matx_double_3_4___call__(self, i, j) val = property(_OCD._Matx_double_3_4_val_get, _OCD._Matx_double_3_4_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_double_3_4_swiginit(self, _OCD.new__Matx_double_3_4(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_double_3_4___str__(self) __swig_destroy__ = _OCD.delete__Matx_double_3_4 # Register _Matx_double_3_4 in _OCD: _OCD._Matx_double_3_4_swigregister(_Matx_double_3_4) def _Matx_double_3_4_all(alpha): return _OCD._Matx_double_3_4_all(alpha) def _Matx_double_3_4_zeros(): return _OCD._Matx_double_3_4_zeros() def _Matx_double_3_4_ones(): return _OCD._Matx_double_3_4_ones() def _Matx_double_3_4_eye(): return _OCD._Matx_double_3_4_eye() def _Matx_double_3_4_randu(a, b): return _OCD._Matx_double_3_4_randu(a, b) def _Matx_double_3_4_randn(a, b): return _OCD._Matx_double_3_4_randn(a, b) Matx34d = _Matx_double_3_4 class _Matx_float_4_3(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_float_4_3_rows cols = _OCD._Matx_float_4_3_cols channels = _OCD._Matx_float_4_3_channels shortdim = _OCD._Matx_float_4_3_shortdim @staticmethod def all(alpha): return _OCD._Matx_float_4_3_all(alpha) @staticmethod def zeros(): return _OCD._Matx_float_4_3_zeros() @staticmethod def ones(): return _OCD._Matx_float_4_3_ones() @staticmethod def eye(): return _OCD._Matx_float_4_3_eye() @staticmethod def randu(a, b): return _OCD._Matx_float_4_3_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_float_4_3_randn(a, b) def dot(self, v): return _OCD._Matx_float_4_3_dot(self, v) def ddot(self, v): return _OCD._Matx_float_4_3_ddot(self, v) def t(self): return _OCD._Matx_float_4_3_t(self) def mul(self, a): return _OCD._Matx_float_4_3_mul(self, a) def div(self, a): return _OCD._Matx_float_4_3_div(self, a) def __call__(self, i, j): return _OCD._Matx_float_4_3___call__(self, i, j) val = property(_OCD._Matx_float_4_3_val_get, _OCD._Matx_float_4_3_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_float_4_3_swiginit(self, _OCD.new__Matx_float_4_3(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_float_4_3___str__(self) __swig_destroy__ = _OCD.delete__Matx_float_4_3 # Register _Matx_float_4_3 in _OCD: _OCD._Matx_float_4_3_swigregister(_Matx_float_4_3) def _Matx_float_4_3_all(alpha): return _OCD._Matx_float_4_3_all(alpha) def _Matx_float_4_3_zeros(): return _OCD._Matx_float_4_3_zeros() def _Matx_float_4_3_ones(): return _OCD._Matx_float_4_3_ones() def _Matx_float_4_3_eye(): return _OCD._Matx_float_4_3_eye() def _Matx_float_4_3_randu(a, b): return _OCD._Matx_float_4_3_randu(a, b) def _Matx_float_4_3_randn(a, b): return _OCD._Matx_float_4_3_randn(a, b) Matx43f = _Matx_float_4_3 class _Matx_double_4_3(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_double_4_3_rows cols = _OCD._Matx_double_4_3_cols channels = _OCD._Matx_double_4_3_channels shortdim = _OCD._Matx_double_4_3_shortdim @staticmethod def all(alpha): return _OCD._Matx_double_4_3_all(alpha) @staticmethod def zeros(): return _OCD._Matx_double_4_3_zeros() @staticmethod def ones(): return _OCD._Matx_double_4_3_ones() @staticmethod def eye(): return _OCD._Matx_double_4_3_eye() @staticmethod def randu(a, b): return _OCD._Matx_double_4_3_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_double_4_3_randn(a, b) def dot(self, v): return _OCD._Matx_double_4_3_dot(self, v) def ddot(self, v): return _OCD._Matx_double_4_3_ddot(self, v) def t(self): return _OCD._Matx_double_4_3_t(self) def mul(self, a): return _OCD._Matx_double_4_3_mul(self, a) def div(self, a): return _OCD._Matx_double_4_3_div(self, a) def __call__(self, i, j): return _OCD._Matx_double_4_3___call__(self, i, j) val = property(_OCD._Matx_double_4_3_val_get, _OCD._Matx_double_4_3_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_double_4_3_swiginit(self, _OCD.new__Matx_double_4_3(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_double_4_3___str__(self) __swig_destroy__ = _OCD.delete__Matx_double_4_3 # Register _Matx_double_4_3 in _OCD: _OCD._Matx_double_4_3_swigregister(_Matx_double_4_3) def _Matx_double_4_3_all(alpha): return _OCD._Matx_double_4_3_all(alpha) def _Matx_double_4_3_zeros(): return _OCD._Matx_double_4_3_zeros() def _Matx_double_4_3_ones(): return _OCD._Matx_double_4_3_ones() def _Matx_double_4_3_eye(): return _OCD._Matx_double_4_3_eye() def _Matx_double_4_3_randu(a, b): return _OCD._Matx_double_4_3_randu(a, b) def _Matx_double_4_3_randn(a, b): return _OCD._Matx_double_4_3_randn(a, b) Matx43d = _Matx_double_4_3 class _Matx_float_4_4(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_float_4_4_rows cols = _OCD._Matx_float_4_4_cols channels = _OCD._Matx_float_4_4_channels shortdim = _OCD._Matx_float_4_4_shortdim @staticmethod def all(alpha): return _OCD._Matx_float_4_4_all(alpha) @staticmethod def zeros(): return _OCD._Matx_float_4_4_zeros() @staticmethod def ones(): return _OCD._Matx_float_4_4_ones() @staticmethod def eye(): return _OCD._Matx_float_4_4_eye() @staticmethod def randu(a, b): return _OCD._Matx_float_4_4_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_float_4_4_randn(a, b) def dot(self, v): return _OCD._Matx_float_4_4_dot(self, v) def ddot(self, v): return _OCD._Matx_float_4_4_ddot(self, v) def t(self): return _OCD._Matx_float_4_4_t(self) def mul(self, a): return _OCD._Matx_float_4_4_mul(self, a) def div(self, a): return _OCD._Matx_float_4_4_div(self, a) def __call__(self, i, j): return _OCD._Matx_float_4_4___call__(self, i, j) val = property(_OCD._Matx_float_4_4_val_get, _OCD._Matx_float_4_4_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_float_4_4_swiginit(self, _OCD.new__Matx_float_4_4(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_float_4_4___str__(self) __swig_destroy__ = _OCD.delete__Matx_float_4_4 # Register _Matx_float_4_4 in _OCD: _OCD._Matx_float_4_4_swigregister(_Matx_float_4_4) def _Matx_float_4_4_all(alpha): return _OCD._Matx_float_4_4_all(alpha) def _Matx_float_4_4_zeros(): return _OCD._Matx_float_4_4_zeros() def _Matx_float_4_4_ones(): return _OCD._Matx_float_4_4_ones() def _Matx_float_4_4_eye(): return _OCD._Matx_float_4_4_eye() def _Matx_float_4_4_randu(a, b): return _OCD._Matx_float_4_4_randu(a, b) def _Matx_float_4_4_randn(a, b): return _OCD._Matx_float_4_4_randn(a, b) Matx44f = _Matx_float_4_4 class _Matx_double_4_4(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_double_4_4_rows cols = _OCD._Matx_double_4_4_cols channels = _OCD._Matx_double_4_4_channels shortdim = _OCD._Matx_double_4_4_shortdim @staticmethod def all(alpha): return _OCD._Matx_double_4_4_all(alpha) @staticmethod def zeros(): return _OCD._Matx_double_4_4_zeros() @staticmethod def ones(): return _OCD._Matx_double_4_4_ones() @staticmethod def eye(): return _OCD._Matx_double_4_4_eye() @staticmethod def randu(a, b): return _OCD._Matx_double_4_4_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_double_4_4_randn(a, b) def dot(self, v): return _OCD._Matx_double_4_4_dot(self, v) def ddot(self, v): return _OCD._Matx_double_4_4_ddot(self, v) def t(self): return _OCD._Matx_double_4_4_t(self) def mul(self, a): return _OCD._Matx_double_4_4_mul(self, a) def div(self, a): return _OCD._Matx_double_4_4_div(self, a) def __call__(self, i, j): return _OCD._Matx_double_4_4___call__(self, i, j) val = property(_OCD._Matx_double_4_4_val_get, _OCD._Matx_double_4_4_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_double_4_4_swiginit(self, _OCD.new__Matx_double_4_4(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_double_4_4___str__(self) __swig_destroy__ = _OCD.delete__Matx_double_4_4 # Register _Matx_double_4_4 in _OCD: _OCD._Matx_double_4_4_swigregister(_Matx_double_4_4) def _Matx_double_4_4_all(alpha): return _OCD._Matx_double_4_4_all(alpha) def _Matx_double_4_4_zeros(): return _OCD._Matx_double_4_4_zeros() def _Matx_double_4_4_ones(): return _OCD._Matx_double_4_4_ones() def _Matx_double_4_4_eye(): return _OCD._Matx_double_4_4_eye() def _Matx_double_4_4_randu(a, b): return _OCD._Matx_double_4_4_randu(a, b) def _Matx_double_4_4_randn(a, b): return _OCD._Matx_double_4_4_randn(a, b) Matx44d = _Matx_double_4_4 class _Matx_float_6_6(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_float_6_6_rows cols = _OCD._Matx_float_6_6_cols channels = _OCD._Matx_float_6_6_channels shortdim = _OCD._Matx_float_6_6_shortdim @staticmethod def all(alpha): return _OCD._Matx_float_6_6_all(alpha) @staticmethod def zeros(): return _OCD._Matx_float_6_6_zeros() @staticmethod def ones(): return _OCD._Matx_float_6_6_ones() @staticmethod def eye(): return _OCD._Matx_float_6_6_eye() @staticmethod def randu(a, b): return _OCD._Matx_float_6_6_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_float_6_6_randn(a, b) def dot(self, v): return _OCD._Matx_float_6_6_dot(self, v) def ddot(self, v): return _OCD._Matx_float_6_6_ddot(self, v) def t(self): return _OCD._Matx_float_6_6_t(self) def mul(self, a): return _OCD._Matx_float_6_6_mul(self, a) def div(self, a): return _OCD._Matx_float_6_6_div(self, a) def __call__(self, i, j): return _OCD._Matx_float_6_6___call__(self, i, j) val = property(_OCD._Matx_float_6_6_val_get, _OCD._Matx_float_6_6_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_float_6_6_swiginit(self, _OCD.new__Matx_float_6_6(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_float_6_6___str__(self) __swig_destroy__ = _OCD.delete__Matx_float_6_6 # Register _Matx_float_6_6 in _OCD: _OCD._Matx_float_6_6_swigregister(_Matx_float_6_6) def _Matx_float_6_6_all(alpha): return _OCD._Matx_float_6_6_all(alpha) def _Matx_float_6_6_zeros(): return _OCD._Matx_float_6_6_zeros() def _Matx_float_6_6_ones(): return _OCD._Matx_float_6_6_ones() def _Matx_float_6_6_eye(): return _OCD._Matx_float_6_6_eye() def _Matx_float_6_6_randu(a, b): return _OCD._Matx_float_6_6_randu(a, b) def _Matx_float_6_6_randn(a, b): return _OCD._Matx_float_6_6_randn(a, b) Matx66f = _Matx_float_6_6 class _Matx_double_6_6(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr rows = _OCD._Matx_double_6_6_rows cols = _OCD._Matx_double_6_6_cols channels = _OCD._Matx_double_6_6_channels shortdim = _OCD._Matx_double_6_6_shortdim @staticmethod def all(alpha): return _OCD._Matx_double_6_6_all(alpha) @staticmethod def zeros(): return _OCD._Matx_double_6_6_zeros() @staticmethod def ones(): return _OCD._Matx_double_6_6_ones() @staticmethod def eye(): return _OCD._Matx_double_6_6_eye() @staticmethod def randu(a, b): return _OCD._Matx_double_6_6_randu(a, b) @staticmethod def randn(a, b): return _OCD._Matx_double_6_6_randn(a, b) def dot(self, v): return _OCD._Matx_double_6_6_dot(self, v) def ddot(self, v): return _OCD._Matx_double_6_6_ddot(self, v) def t(self): return _OCD._Matx_double_6_6_t(self) def mul(self, a): return _OCD._Matx_double_6_6_mul(self, a) def div(self, a): return _OCD._Matx_double_6_6_div(self, a) def __call__(self, i, j): return _OCD._Matx_double_6_6___call__(self, i, j) val = property(_OCD._Matx_double_6_6_val_get, _OCD._Matx_double_6_6_val_set) import re _re_pattern = re.compile("^_Matx_(?P[a-zA-Z_][a-zA-Z0-9_]*)_(?P[0-9]+)_(?P[0-9]+)$") def __init__(self, *args): ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) array = _array_map[value_type](rows*cols) for i in range(len(args)): array[i] = args[i] args = [array] _OCD._Matx_double_6_6_swiginit(self, _OCD.new__Matx_double_6_6(*args)) def __getattribute__(self, name): if name == "__array_interface__": ma = self._re_pattern.match(self.__class__.__name__) value_type = ma.group("value_type") rows = int(ma.group("rows")) cols = int(ma.group("cols")) return {"shape": (rows, cols), "typestr": _cv_numpy_typestr_map[value_type], "data": (int(self.val), False)} else: return object.__getattribute__(self, name) def __getitem__(self, key): ma = self._re_pattern.match(self.__class__.__name__) rows = int(ma.group("rows")) cols = int(ma.group("cols")) if isinstance(key, int): if rows != 1 and cols != 1: raise IndexError i = key j = 0 elif isinstance(key, tuple) and len(key) == 2: i = key[0] j = key[1] else: raise TypeError if i >= rows or j >= cols: raise IndexError return self(i, j) def __str__(self): return _OCD._Matx_double_6_6___str__(self) __swig_destroy__ = _OCD.delete__Matx_double_6_6 # Register _Matx_double_6_6 in _OCD: _OCD._Matx_double_6_6_swigregister(_Matx_double_6_6) def _Matx_double_6_6_all(alpha): return _OCD._Matx_double_6_6_all(alpha) def _Matx_double_6_6_zeros(): return _OCD._Matx_double_6_6_zeros() def _Matx_double_6_6_ones(): return _OCD._Matx_double_6_6_ones() def _Matx_double_6_6_eye(): return _OCD._Matx_double_6_6_eye() def _Matx_double_6_6_randu(a, b): return _OCD._Matx_double_6_6_randu(a, b) def _Matx_double_6_6_randn(a, b): return _OCD._Matx_double_6_6_randn(a, b) Matx66d = _Matx_double_6_6 class _Point__int(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, *args): _OCD._Point__int_swiginit(self, _OCD.new__Point__int(*args)) def dot(self, pt): return _OCD._Point__int_dot(self, pt) def ddot(self, pt): return _OCD._Point__int_ddot(self, pt) def cross(self, pt): return _OCD._Point__int_cross(self, pt) x = property(_OCD._Point__int_x_get, _OCD._Point__int_x_set) y = property(_OCD._Point__int_y_get, _OCD._Point__int_y_set) def __iter__(self): return iter((self.x, self.y)) def __str__(self): return _OCD._Point__int___str__(self) __swig_destroy__ = _OCD.delete__Point__int # Register _Point__int in _OCD: _OCD._Point__int_swigregister(_Point__int) Point2i = _Point__int class _Point__float(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, *args): _OCD._Point__float_swiginit(self, _OCD.new__Point__float(*args)) def dot(self, pt): return _OCD._Point__float_dot(self, pt) def ddot(self, pt): return _OCD._Point__float_ddot(self, pt) def cross(self, pt): return _OCD._Point__float_cross(self, pt) x = property(_OCD._Point__float_x_get, _OCD._Point__float_x_set) y = property(_OCD._Point__float_y_get, _OCD._Point__float_y_set) def __iter__(self): return iter((self.x, self.y)) def __str__(self): return _OCD._Point__float___str__(self) __swig_destroy__ = _OCD.delete__Point__float # Register _Point__float in _OCD: _OCD._Point__float_swigregister(_Point__float) Point2f = _Point__float class _Point__double(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, *args): _OCD._Point__double_swiginit(self, _OCD.new__Point__double(*args)) def dot(self, pt): return _OCD._Point__double_dot(self, pt) def ddot(self, pt): return _OCD._Point__double_ddot(self, pt) def cross(self, pt): return _OCD._Point__double_cross(self, pt) x = property(_OCD._Point__double_x_get, _OCD._Point__double_x_set) y = property(_OCD._Point__double_y_get, _OCD._Point__double_y_set) def __iter__(self): return iter((self.x, self.y)) def __str__(self): return _OCD._Point__double___str__(self) __swig_destroy__ = _OCD.delete__Point__double # Register _Point__double in _OCD: _OCD._Point__double_swigregister(_Point__double) Point2d = _Point__double Point = Point2i class _Rect__int(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, *args): _OCD._Rect__int_swiginit(self, _OCD.new__Rect__int(*args)) def tl(self): return _OCD._Rect__int_tl(self) def br(self): return _OCD._Rect__int_br(self) def size(self): return _OCD._Rect__int_size(self) def area(self): return _OCD._Rect__int_area(self) def contains(self, pt): return _OCD._Rect__int_contains(self, pt) x = property(_OCD._Rect__int_x_get, _OCD._Rect__int_x_set) y = property(_OCD._Rect__int_y_get, _OCD._Rect__int_y_set) width = property(_OCD._Rect__int_width_get, _OCD._Rect__int_width_set) height = property(_OCD._Rect__int_height_get, _OCD._Rect__int_height_set) def __iter__(self): return iter((self.x, self.y, self.width, self.height)) def __str__(self): return _OCD._Rect__int___str__(self) __swig_destroy__ = _OCD.delete__Rect__int # Register _Rect__int in _OCD: _OCD._Rect__int_swigregister(_Rect__int) Rect2i = _Rect__int class _Rect__float(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, *args): _OCD._Rect__float_swiginit(self, _OCD.new__Rect__float(*args)) def tl(self): return _OCD._Rect__float_tl(self) def br(self): return _OCD._Rect__float_br(self) def size(self): return _OCD._Rect__float_size(self) def area(self): return _OCD._Rect__float_area(self) def contains(self, pt): return _OCD._Rect__float_contains(self, pt) x = property(_OCD._Rect__float_x_get, _OCD._Rect__float_x_set) y = property(_OCD._Rect__float_y_get, _OCD._Rect__float_y_set) width = property(_OCD._Rect__float_width_get, _OCD._Rect__float_width_set) height = property(_OCD._Rect__float_height_get, _OCD._Rect__float_height_set) def __iter__(self): return iter((self.x, self.y, self.width, self.height)) def __str__(self): return _OCD._Rect__float___str__(self) __swig_destroy__ = _OCD.delete__Rect__float # Register _Rect__float in _OCD: _OCD._Rect__float_swigregister(_Rect__float) Rect2f = _Rect__float class _Rect__double(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, *args): _OCD._Rect__double_swiginit(self, _OCD.new__Rect__double(*args)) def tl(self): return _OCD._Rect__double_tl(self) def br(self): return _OCD._Rect__double_br(self) def size(self): return _OCD._Rect__double_size(self) def area(self): return _OCD._Rect__double_area(self) def contains(self, pt): return _OCD._Rect__double_contains(self, pt) x = property(_OCD._Rect__double_x_get, _OCD._Rect__double_x_set) y = property(_OCD._Rect__double_y_get, _OCD._Rect__double_y_set) width = property(_OCD._Rect__double_width_get, _OCD._Rect__double_width_set) height = property(_OCD._Rect__double_height_get, _OCD._Rect__double_height_set) def __iter__(self): return iter((self.x, self.y, self.width, self.height)) def __str__(self): return _OCD._Rect__double___str__(self) __swig_destroy__ = _OCD.delete__Rect__double # Register _Rect__double in _OCD: _OCD._Rect__double_swigregister(_Rect__double) Rect2d = _Rect__double Rect = Rect2i class _Scalar__double(_Vec_double_4): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, *args): _OCD._Scalar__double_swiginit(self, _OCD.new__Scalar__double(*args)) @staticmethod def all(v0): return _OCD._Scalar__double_all(v0) def mul(self, a, scale=1): return _OCD._Scalar__double_mul(self, a, scale) def conj(self): return _OCD._Scalar__double_conj(self) def isReal(self): return _OCD._Scalar__double_isReal(self) def __iter__(self): return iter((self(0), self(1), self(2), self(3))) def __getitem__(self, key): if not isinstance(key, int): raise TypeError if key >= 4: raise IndexError return self(key) def __str__(self): return _OCD._Scalar__double___str__(self) __swig_destroy__ = _OCD.delete__Scalar__double # Register _Scalar__double in _OCD: _OCD._Scalar__double_swigregister(_Scalar__double) def _Scalar__double_all(v0): return _OCD._Scalar__double_all(v0) Scalar4d = _Scalar__double Scalar = Scalar4d class _Size__int(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, *args): _OCD._Size__int_swiginit(self, _OCD.new__Size__int(*args)) def area(self): return _OCD._Size__int_area(self) width = property(_OCD._Size__int_width_get, _OCD._Size__int_width_set) height = property(_OCD._Size__int_height_get, _OCD._Size__int_height_set) def __iter__(self): return iter((self.width, self.height)) def __str__(self): return _OCD._Size__int___str__(self) __swig_destroy__ = _OCD.delete__Size__int # Register _Size__int in _OCD: _OCD._Size__int_swigregister(_Size__int) Size2i = _Size__int class _Size__float(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, *args): _OCD._Size__float_swiginit(self, _OCD.new__Size__float(*args)) def area(self): return _OCD._Size__float_area(self) width = property(_OCD._Size__float_width_get, _OCD._Size__float_width_set) height = property(_OCD._Size__float_height_get, _OCD._Size__float_height_set) def __iter__(self): return iter((self.width, self.height)) def __str__(self): return _OCD._Size__float___str__(self) __swig_destroy__ = _OCD.delete__Size__float # Register _Size__float in _OCD: _OCD._Size__float_swigregister(_Size__float) Size2f = _Size__float class _Size__double(object): thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag") __repr__ = _swig_repr def __init__(self, *args): _OCD._Size__double_swiginit(self, _OCD.new__Size__double(*args)) def area(self): return _OCD._Size__double_area(self) width = property(_OCD._Size__double_width_get, _OCD._Size__double_width_set) height = property(_OCD._Size__double_height_get, _OCD._Size__double_height_set) def __iter__(self): return iter((self.width, self.height)) def __str__(self): return _OCD._Size__double___str__(self) __swig_destroy__ = _OCD.delete__Size__double # Register _Size__double in _OCD: _OCD._Size__double_swigregister(_Size__double) Size2d = _Size__double Size = Size2i def OCD(file1, file2, outfile, dir): return _OCD.OCD(file1, file2, outfile, dir)