from ._base import EncoderMixin from timm.models.resnet import ResNet from timm.models.resnest import ResNestBottleneck import torch.nn as nn class ResNestEncoder(ResNet, EncoderMixin): def __init__(self, out_channels, depth=5, **kwargs): super().__init__(**kwargs) self._depth = depth self._out_channels = out_channels self._in_channels = 3 del self.fc del self.global_pool def get_stages(self): return [ nn.Identity(), nn.Sequential(self.conv1, self.bn1, self.act1), nn.Sequential(self.maxpool, self.layer1), self.layer2, self.layer3, self.layer4, ] def make_dilated(self, output_stride): raise ValueError("ResNest encoders do not support dilated mode") def forward(self, x): stages = self.get_stages() features = [] for i in range(self._depth + 1): x = stages[i](x) features.append(x) return features def load_state_dict(self, state_dict, **kwargs): state_dict.pop("fc.bias", None) state_dict.pop("fc.weight", None) super().load_state_dict(state_dict, **kwargs) resnest_weights = { 'timm-resnest14d': { 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest14-9c8fe254.pth' }, 'timm-resnest26d': { 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest26-50eb607c.pth' }, 'timm-resnest50d': { 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50-528c19ca.pth', }, 'timm-resnest101e': { 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest101-22405ba7.pth', }, 'timm-resnest200e': { 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest200-75117900.pth', }, 'timm-resnest269e': { 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest269-0cc87c48.pth', }, 'timm-resnest50d_4s2x40d': { 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_4s2x40d-41d14ed0.pth', }, 'timm-resnest50d_1s4x24d': { 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_1s4x24d-d4a4f76f.pth', } } pretrained_settings = {} for model_name, sources in resnest_weights.items(): pretrained_settings[model_name] = {} for source_name, source_url in sources.items(): pretrained_settings[model_name][source_name] = { "url": source_url, 'input_size': [3, 224, 224], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000 } timm_resnest_encoders = { 'timm-resnest14d': { 'encoder': ResNestEncoder, "pretrained_settings": pretrained_settings["timm-resnest14d"], 'params': { 'out_channels': (3, 64, 256, 512, 1024, 2048), 'block': ResNestBottleneck, 'layers': [1, 1, 1, 1], 'stem_type': 'deep', 'stem_width': 32, 'avg_down': True, 'base_width': 64, 'cardinality': 1, 'block_args': {'radix': 2, 'avd': True, 'avd_first': False} } }, 'timm-resnest26d': { 'encoder': ResNestEncoder, "pretrained_settings": pretrained_settings["timm-resnest26d"], 'params': { 'out_channels': (3, 64, 256, 512, 1024, 2048), 'block': ResNestBottleneck, 'layers': [2, 2, 2, 2], 'stem_type': 'deep', 'stem_width': 32, 'avg_down': True, 'base_width': 64, 'cardinality': 1, 'block_args': {'radix': 2, 'avd': True, 'avd_first': False} } }, 'timm-resnest50d': { 'encoder': ResNestEncoder, "pretrained_settings": pretrained_settings["timm-resnest50d"], 'params': { 'out_channels': (3, 64, 256, 512, 1024, 2048), 'block': ResNestBottleneck, 'layers': [3, 4, 6, 3], 'stem_type': 'deep', 'stem_width': 32, 'avg_down': True, 'base_width': 64, 'cardinality': 1, 'block_args': {'radix': 2, 'avd': True, 'avd_first': False} } }, 'timm-resnest101e': { 'encoder': ResNestEncoder, "pretrained_settings": pretrained_settings["timm-resnest101e"], 'params': { 'out_channels': (3, 128, 256, 512, 1024, 2048), 'block': ResNestBottleneck, 'layers': [3, 4, 23, 3], 'stem_type': 'deep', 'stem_width': 64, 'avg_down': True, 'base_width': 64, 'cardinality': 1, 'block_args': {'radix': 2, 'avd': True, 'avd_first': False} } }, 'timm-resnest200e': { 'encoder': ResNestEncoder, "pretrained_settings": pretrained_settings["timm-resnest200e"], 'params': { 'out_channels': (3, 128, 256, 512, 1024, 2048), 'block': ResNestBottleneck, 'layers': [3, 24, 36, 3], 'stem_type': 'deep', 'stem_width': 64, 'avg_down': True, 'base_width': 64, 'cardinality': 1, 'block_args': {'radix': 2, 'avd': True, 'avd_first': False} } }, 'timm-resnest269e': { 'encoder': ResNestEncoder, "pretrained_settings": pretrained_settings["timm-resnest269e"], 'params': { 'out_channels': (3, 128, 256, 512, 1024, 2048), 'block': ResNestBottleneck, 'layers': [3, 30, 48, 8], 'stem_type': 'deep', 'stem_width': 64, 'avg_down': True, 'base_width': 64, 'cardinality': 1, 'block_args': {'radix': 2, 'avd': True, 'avd_first': False} }, }, 'timm-resnest50d_4s2x40d': { 'encoder': ResNestEncoder, "pretrained_settings": pretrained_settings["timm-resnest50d_4s2x40d"], 'params': { 'out_channels': (3, 64, 256, 512, 1024, 2048), 'block': ResNestBottleneck, 'layers': [3, 4, 6, 3], 'stem_type': 'deep', 'stem_width': 32, 'avg_down': True, 'base_width': 40, 'cardinality': 2, 'block_args': {'radix': 4, 'avd': True, 'avd_first': True} } }, 'timm-resnest50d_1s4x24d': { 'encoder': ResNestEncoder, "pretrained_settings": pretrained_settings["timm-resnest50d_1s4x24d"], 'params': { 'out_channels': (3, 64, 256, 512, 1024, 2048), 'block': ResNestBottleneck, 'layers': [3, 4, 6, 3], 'stem_type': 'deep', 'stem_width': 32, 'avg_down': True, 'base_width': 24, 'cardinality': 4, 'block_args': {'radix': 1, 'avd': True, 'avd_first': True} } } }