from ._base import EncoderMixin from timm.models.resnet import ResNet from timm.models.sknet import SelectiveKernelBottleneck, SelectiveKernelBasic import torch.nn as nn class SkNetEncoder(ResNet, EncoderMixin): def __init__(self, out_channels, depth=5, **kwargs): super().__init__(**kwargs) self._depth = depth self._out_channels = out_channels self._in_channels = 3 del self.fc del self.global_pool def get_stages(self): return [ nn.Identity(), nn.Sequential(self.conv1, self.bn1, self.act1), nn.Sequential(self.maxpool, self.layer1), self.layer2, self.layer3, self.layer4, ] def forward(self, x): stages = self.get_stages() features = [] for i in range(self._depth + 1): x = stages[i](x) features.append(x) return features def load_state_dict(self, state_dict, **kwargs): state_dict.pop("fc.bias", None) state_dict.pop("fc.weight", None) super().load_state_dict(state_dict, **kwargs) sknet_weights = { 'timm-skresnet18': { 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet18_ra-4eec2804.pth' }, 'timm-skresnet34': { 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet34_ra-bdc0ccde.pth' }, 'timm-skresnext50_32x4d': { 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnext50_ra-f40e40bf.pth', } } pretrained_settings = {} for model_name, sources in sknet_weights.items(): pretrained_settings[model_name] = {} for source_name, source_url in sources.items(): pretrained_settings[model_name][source_name] = { "url": source_url, 'input_size': [3, 224, 224], 'input_range': [0, 1], 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'num_classes': 1000 } timm_sknet_encoders = { 'timm-skresnet18': { 'encoder': SkNetEncoder, "pretrained_settings": pretrained_settings["timm-skresnet18"], 'params': { 'out_channels': (3, 64, 64, 128, 256, 512), 'block': SelectiveKernelBasic, 'layers': [2, 2, 2, 2], 'zero_init_last_bn': False, 'block_args': {'sk_kwargs': {'rd_ratio': 1/8, 'split_input': True}} } }, 'timm-skresnet34': { 'encoder': SkNetEncoder, "pretrained_settings": pretrained_settings["timm-skresnet34"], 'params': { 'out_channels': (3, 64, 64, 128, 256, 512), 'block': SelectiveKernelBasic, 'layers': [3, 4, 6, 3], 'zero_init_last_bn': False, 'block_args': {'sk_kwargs': {'rd_ratio': 1/8, 'split_input': True}} } }, 'timm-skresnext50_32x4d': { 'encoder': SkNetEncoder, "pretrained_settings": pretrained_settings["timm-skresnext50_32x4d"], 'params': { 'out_channels': (3, 64, 256, 512, 1024, 2048), 'block': SelectiveKernelBottleneck, 'layers': [3, 4, 6, 3], 'zero_init_last_bn': False, 'cardinality': 32, 'base_width': 4 } } }