from rscder.utils.geomath import geo2imageRC, imageRC2geo from rscder.utils.project import Project, PairLayer from misc import Register, AlgFrontend from . import VEG_CD @VEG_CD.register class VFCCD(AlgFrontend): @staticmethod def get_name(): return '植被覆盖度变化' @staticmethod def run_alg(pth1:str,pth2:str,layer_parent:PairLayer,send_message = None,*args, **kargs): ds1:gdal.Dataset=gdal.Open(pth1) ds2:gdal.Dataset=gdal.Open(pth2) cell_size = layer_parent.cell_size xsize = layer_parent.size[0] ysize = layer_parent.size[1] band = ds1.RasterCount yblocks = ysize // cell_size[1] driver = gdal.GetDriverByName('GTiff') out_tif = os.path.join(Project().other_path, 'temp.tif') out_ds = driver.Create(out_tif, xsize, ysize, 1, gdal.GDT_Float32) geo=layer_parent.grid.geo proj=layer_parent.grid.proj out_ds.SetGeoTransform(geo) out_ds.SetProjection(proj) max_diff = 0 min_diff = math.inf start1x,start1y=geo2imageRC(ds1.GetGeoTransform(),layer_parent.mask.xy[0],layer_parent.mask.xy[1]) end1x,end1y=geo2imageRC(ds1.GetGeoTransform(),layer_parent.mask.xy[2],layer_parent.mask.xy[3]) start2x,start2y=geo2imageRC(ds2.GetGeoTransform(),layer_parent.mask.xy[0],layer_parent.mask.xy[1]) end2x,end2y=geo2imageRC(ds2.GetGeoTransform(),layer_parent.mask.xy[2],layer_parent.mask.xy[3]) for j in range(yblocks + 1):#该改这里了 if send_message is not None: send_message.emit(f'计算{j}/{yblocks}') block_xy1 = (start1x, start1y+j * cell_size[1]) block_xy2 = (start2x,start2y+j*cell_size[1]) block_xy=(0,j * cell_size[1]) if block_xy1[1] > end1y or block_xy2[1] > end2y: break block_size=(xsize, cell_size[1]) block_size1 = (xsize, cell_size[1]) block_size2 = (xsize,cell_size[1]) if block_xy[1] + block_size[1] > ysize: block_size = (xsize, ysize - block_xy[1]) if block_xy1[1] + block_size1[1] > end1y: block_size1 = (xsize,end1y - block_xy1[1]) if block_xy2[1] + block_size2[1] > end2y: block_size2 = (xsize, end2y - block_xy2[1]) block_data1 = ds1.ReadAsArray(*block_xy1, *block_size1) block_data2 = ds2.ReadAsArray(*block_xy2, *block_size2) if band == 1: block_data1 = block_data1[None, ...] block_data2 = block_data2[None, ...] # pdb.set_trace() block_diff = block_data1.sum(0) - block_data2.sum(0) block_diff = block_diff.astype(np.float32) block_diff = np.abs(block_diff) min_diff = min(min_diff, block_diff[block_diff > 0].min()) max_diff = max(max_diff, block_diff.max()) out_ds.GetRasterBand(1).WriteArray(block_diff, *block_xy) if send_message is not None: send_message.emit(f'完成{j}/{yblocks}') del ds2 del ds1 out_ds.FlushCache() del out_ds if send_message is not None: send_message.emit('归一化概率中...') temp_in_ds = gdal.Open(out_tif) out_normal_tif = os.path.join(Project().cmi_path, '{}_{}_cmi.tif'.format(layer_parent.name, int(np.random.rand() * 100000))) out_normal_ds = driver.Create(out_normal_tif, xsize, ysize, 1, gdal.GDT_Byte) out_normal_ds.SetGeoTransform(geo) out_normal_ds.SetProjection(proj) # hist = np.zeros(256, dtype=np.int32) for j in range(yblocks+1): block_xy = (0, j * cell_size[1]) if block_xy[1] > ysize: break block_size = (xsize, cell_size[1]) if block_xy[1] + block_size[1] > ysize: block_size = (xsize, ysize - block_xy[1]) block_data = temp_in_ds.ReadAsArray(*block_xy, *block_size) block_data = (block_data - min_diff) / (max_diff - min_diff) * 255 block_data = block_data.astype(np.uint8) out_normal_ds.GetRasterBand(1).WriteArray(block_data, *block_xy) # hist_t, _ = np.histogram(block_data, bins=256, range=(0, 256)) # hist += hist_t # print(hist) del temp_in_ds del out_normal_ds try: os.remove(out_tif) except: pass if send_message is not None: send_message.emit('差分法计算完成') return out_normal_tif