106 lines
6.0 KiB
Python
106 lines
6.0 KiB
Python
from data import create_dataset
|
|
from models import create_model
|
|
from util.util import save_images
|
|
import numpy as np
|
|
from util.util import mkdir
|
|
import argparse
|
|
from PIL import Image
|
|
import torchvision.transforms as transforms
|
|
|
|
|
|
def transform():
|
|
transform_list = []
|
|
transform_list += [transforms.ToTensor()]
|
|
transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
|
|
return transforms.Compose(transform_list)
|
|
|
|
|
|
def val(opt):
|
|
image_1_path = opt.image1_path
|
|
image_2_path = opt.image2_path
|
|
A_img = Image.open(image_1_path).convert('RGB')
|
|
B_img = Image.open(image_2_path).convert('RGB')
|
|
trans = transform()
|
|
A = trans(A_img).unsqueeze(0)
|
|
B = trans(B_img).unsqueeze(0)
|
|
# dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
|
|
model = create_model(opt) # create a model given opt.model and other options
|
|
model.setup(opt) # regular setup: load and print networks; create schedulers
|
|
save_path = opt.results_dir
|
|
mkdir(save_path)
|
|
model.eval()
|
|
data = {}
|
|
data['A']= A
|
|
data['B'] = B
|
|
data['A_paths'] = [image_1_path]
|
|
|
|
model.set_input(data) # unpack data from data loader
|
|
pred = model.test(val=False) # run inference return pred
|
|
|
|
img_path = [image_1_path] # get image paths
|
|
|
|
save_images(pred, save_path, img_path)
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# 从外界调用方式:
|
|
# python test.py --image1_path [path-to-img1] --image2_path [path-to-img2] --results_dir [path-to-result_dir]
|
|
|
|
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
|
|
parser.add_argument('--image1_path', type=str, default='./samples/A/test_2_0000_0000.png',
|
|
help='path to images A')
|
|
parser.add_argument('--image2_path', type=str, default='./samples/B/test_2_0000_0000.png',
|
|
help='path to images B')
|
|
parser.add_argument('--results_dir', type=str, default='./samples/output/', help='saves results here.')
|
|
|
|
parser.add_argument('--name', type=str, default='pam',
|
|
help='name of the experiment. It decides where to store samples and models')
|
|
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
|
|
parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here')
|
|
# model parameters
|
|
parser.add_argument('--model', type=str, default='CDFA', help='chooses which model to use. [CDF0 | CDFA]')
|
|
parser.add_argument('--input_nc', type=int, default=3, help='# of input image channels: 3 for RGB ')
|
|
parser.add_argument('--output_nc', type=int, default=3, help='# of output image channels: 3 for RGB')
|
|
parser.add_argument('--arch', type=str, default='mynet3', help='feature extractor architecture | mynet3')
|
|
parser.add_argument('--f_c', type=int, default=64, help='feature extractor channel num')
|
|
parser.add_argument('--n_class', type=int, default=2, help='# of output pred channels: 2 for num of classes')
|
|
|
|
parser.add_argument('--SA_mode', type=str, default='PAM',
|
|
help='choose self attention mode for change detection, | ori |1 | 2 |pyramid, ...')
|
|
# dataset parameters
|
|
parser.add_argument('--dataset_mode', type=str, default='changedetection',
|
|
help='chooses how datasets are loaded. [changedetection | json]')
|
|
parser.add_argument('--val_dataset_mode', type=str, default='changedetection',
|
|
help='chooses how datasets are loaded. [changedetection | json]')
|
|
parser.add_argument('--split', type=str, default='train',
|
|
help='chooses wihch list-file to open when use listDataset. [train | val | test]')
|
|
parser.add_argument('--ds', type=int, default='1', help='self attention module downsample rate')
|
|
parser.add_argument('--angle', type=int, default=0, help='rotate angle')
|
|
parser.add_argument('--istest', type=bool, default=False, help='True for the case without label')
|
|
parser.add_argument('--serial_batches', action='store_true',
|
|
help='if true, takes images in order to make batches, otherwise takes them randomly')
|
|
parser.add_argument('--num_threads', default=0, type=int, help='# threads for loading data')
|
|
parser.add_argument('--batch_size', type=int, default=1, help='input batch size')
|
|
parser.add_argument('--load_size', type=int, default=256, help='scale images to this size')
|
|
parser.add_argument('--crop_size', type=int, default=256, help='then crop to this size')
|
|
parser.add_argument('--max_dataset_size', type=int, default=float("inf"),
|
|
help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.')
|
|
parser.add_argument('--preprocess', type=str, default='resize_and_crop',
|
|
help='scaling and cropping of images at load time [resize_and_crop | none]')
|
|
parser.add_argument('--no_flip', type=bool, default=True,
|
|
help='if specified, do not flip(left-right) the images for data augmentation')
|
|
parser.add_argument('--display_winsize', type=int, default=256, help='display window size for both visdom and HTML')
|
|
parser.add_argument('--epoch', type=str, default='pam',
|
|
help='which epoch to load? set to latest to use latest cached model')
|
|
parser.add_argument('--load_iter', type=int, default='0',
|
|
help='which iteration to load? if load_iter > 0, the code will load models by iter_[load_iter]; otherwise, the code will load models by [epoch]')
|
|
parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information')
|
|
parser.add_argument('--phase', type=str, default='test', help='train, val, test, etc')
|
|
parser.add_argument('--isTrain', type=bool, default=False, help='is or not')
|
|
parser.add_argument('--num_test', type=int, default=np.inf, help='how many test images to run')
|
|
|
|
opt = parser.parse_args()
|
|
val(opt)
|