2023-02-10 21:51:03 +08:00

111 lines
3.3 KiB
Python

"""This module contains simple helper functions """
from __future__ import print_function
import torch
import numpy as np
from PIL import Image
import os
import ntpath
def save_images(images, img_dir, name):
"""save images in img_dir, with name
iamges: torch.float, B*C*H*W
img_dir: str
name: list [str]
"""
for i, image in enumerate(images):
print(image.shape)
image_numpy = tensor2im(image.unsqueeze(0),normalize=False)*255
basename = os.path.basename(name[i])
print('name:', basename)
save_path = os.path.join(img_dir,basename)
save_image(image_numpy,save_path)
def save_visuals(visuals,img_dir,name):
"""
"""
name = ntpath.basename(name)
name = name.split(".")[0]
print(name)
# save images to the disk
for label, image in visuals.items():
image_numpy = tensor2im(image)
img_path = os.path.join(img_dir, '%s_%s.png' % (name, label))
save_image(image_numpy, img_path)
def tensor2im(input_image, imtype=np.uint8, normalize=True):
""""Converts a Tensor array into a numpy image array.
Parameters:
input_image (tensor) -- the input image tensor array
imtype (type) -- the desired type of the converted numpy array
"""
if not isinstance(input_image, np.ndarray):
if isinstance(input_image, torch.Tensor): # get the data from a variable
image_tensor = input_image.data
else:
return input_image
image_numpy = image_tensor[0].cpu().float().numpy() # convert it into a numpy array
if image_numpy.shape[0] == 1: # grayscale to RGB
image_numpy = np.tile(image_numpy, (3, 1, 1))
image_numpy = np.transpose(image_numpy, (1, 2, 0))
if normalize:
image_numpy = (image_numpy + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling
else: # if it is a numpy array, do nothing
image_numpy = input_image
return image_numpy.astype(imtype)
def save_image(image_numpy, image_path):
"""Save a numpy image to the disk
Parameters:
image_numpy (numpy array) -- input numpy array
image_path (str) -- the path of the image
"""
image_pil = Image.fromarray(image_numpy)
image_pil.save(image_path)
def print_numpy(x, val=True, shp=False):
"""Print the mean, min, max, median, std, and size of a numpy array
Parameters:
val (bool) -- if print the values of the numpy array
shp (bool) -- if print the shape of the numpy array
"""
x = x.astype(np.float64)
if shp:
print('shape,', x.shape)
if val:
x = x.flatten()
print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % (
np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x)))
def mkdirs(paths):
"""create empty directories if they don't exist
Parameters:
paths (str list) -- a list of directory paths
"""
if isinstance(paths, list) and not isinstance(paths, str):
for path in paths:
mkdir(path)
else:
mkdir(paths)
def mkdir(path):
"""create a single empty directory if it didn't exist
Parameters:
path (str) -- a single directory path
"""
if not os.path.exists(path):
os.makedirs(path)