2023-07-26 20:53:08 +08:00

176 lines
6.0 KiB
Python

import timm
import numpy as np
import torch.nn as nn
from ._base import EncoderMixin
def _make_divisible(x, divisible_by=8):
return int(np.ceil(x * 1. / divisible_by) * divisible_by)
class MobileNetV3Encoder(nn.Module, EncoderMixin):
def __init__(self, model_name, width_mult, depth=5, **kwargs):
super().__init__()
if "large" not in model_name and "small" not in model_name:
raise ValueError(
'MobileNetV3 wrong model name {}'.format(model_name)
)
self._mode = "small" if "small" in model_name else "large"
self._depth = depth
self._out_channels = self._get_channels(self._mode, width_mult)
self._in_channels = 3
# minimal models replace hardswish with relu
self.model = timm.create_model(
model_name=model_name,
scriptable=True, # torch.jit scriptable
exportable=True, # onnx export
features_only=True,
)
def _get_channels(self, mode, width_mult):
if mode == "small":
channels = [16, 16, 24, 48, 576]
else:
channels = [16, 24, 40, 112, 960]
channels = [3,] + [_make_divisible(x * width_mult) for x in channels]
return tuple(channels)
def get_stages(self):
if self._mode == 'small':
return [
nn.Identity(),
nn.Sequential(
self.model.conv_stem,
self.model.bn1,
self.model.act1,
),
self.model.blocks[0],
self.model.blocks[1],
self.model.blocks[2:4],
self.model.blocks[4:],
]
elif self._mode == 'large':
return [
nn.Identity(),
nn.Sequential(
self.model.conv_stem,
self.model.bn1,
self.model.act1,
self.model.blocks[0],
),
self.model.blocks[1],
self.model.blocks[2],
self.model.blocks[3:5],
self.model.blocks[5:],
]
else:
ValueError('MobileNetV3 mode should be small or large, got {}'.format(self._mode))
def forward(self, x):
stages = self.get_stages()
features = []
for i in range(self._depth + 1):
x = stages[i](x)
features.append(x)
return features
def load_state_dict(self, state_dict, **kwargs):
state_dict.pop('conv_head.weight', None)
state_dict.pop('conv_head.bias', None)
state_dict.pop('classifier.weight', None)
state_dict.pop('classifier.bias', None)
self.model.load_state_dict(state_dict, **kwargs)
mobilenetv3_weights = {
'tf_mobilenetv3_large_075': {
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth'
},
'tf_mobilenetv3_large_100': {
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth'
},
'tf_mobilenetv3_large_minimal_100': {
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth'
},
'tf_mobilenetv3_small_075': {
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth'
},
'tf_mobilenetv3_small_100': {
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth'
},
'tf_mobilenetv3_small_minimal_100': {
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth'
},
}
pretrained_settings = {}
for model_name, sources in mobilenetv3_weights.items():
pretrained_settings[model_name] = {}
for source_name, source_url in sources.items():
pretrained_settings[model_name][source_name] = {
"url": source_url,
'input_range': [0, 1],
'mean': [0.485, 0.456, 0.406],
'std': [0.229, 0.224, 0.225],
'input_space': 'RGB',
}
timm_mobilenetv3_encoders = {
'timm-mobilenetv3_large_075': {
'encoder': MobileNetV3Encoder,
'pretrained_settings': pretrained_settings['tf_mobilenetv3_large_075'],
'params': {
'model_name': 'tf_mobilenetv3_large_075',
'width_mult': 0.75
}
},
'timm-mobilenetv3_large_100': {
'encoder': MobileNetV3Encoder,
'pretrained_settings': pretrained_settings['tf_mobilenetv3_large_100'],
'params': {
'model_name': 'tf_mobilenetv3_large_100',
'width_mult': 1.0
}
},
'timm-mobilenetv3_large_minimal_100': {
'encoder': MobileNetV3Encoder,
'pretrained_settings': pretrained_settings['tf_mobilenetv3_large_minimal_100'],
'params': {
'model_name': 'tf_mobilenetv3_large_minimal_100',
'width_mult': 1.0
}
},
'timm-mobilenetv3_small_075': {
'encoder': MobileNetV3Encoder,
'pretrained_settings': pretrained_settings['tf_mobilenetv3_small_075'],
'params': {
'model_name': 'tf_mobilenetv3_small_075',
'width_mult': 0.75
}
},
'timm-mobilenetv3_small_100': {
'encoder': MobileNetV3Encoder,
'pretrained_settings': pretrained_settings['tf_mobilenetv3_small_100'],
'params': {
'model_name': 'tf_mobilenetv3_small_100',
'width_mult': 1.0
}
},
'timm-mobilenetv3_small_minimal_100': {
'encoder': MobileNetV3Encoder,
'pretrained_settings': pretrained_settings['tf_mobilenetv3_small_minimal_100'],
'params': {
'model_name': 'tf_mobilenetv3_small_minimal_100',
'width_mult': 1.0
}
},
}