2023-07-26 20:53:08 +08:00

209 lines
7.2 KiB
Python

from ._base import EncoderMixin
from timm.models.resnet import ResNet
from timm.models.resnest import ResNestBottleneck
import torch.nn as nn
class ResNestEncoder(ResNet, EncoderMixin):
def __init__(self, out_channels, depth=5, **kwargs):
super().__init__(**kwargs)
self._depth = depth
self._out_channels = out_channels
self._in_channels = 3
del self.fc
del self.global_pool
def get_stages(self):
return [
nn.Identity(),
nn.Sequential(self.conv1, self.bn1, self.act1),
nn.Sequential(self.maxpool, self.layer1),
self.layer2,
self.layer3,
self.layer4,
]
def make_dilated(self, output_stride):
raise ValueError("ResNest encoders do not support dilated mode")
def forward(self, x):
stages = self.get_stages()
features = []
for i in range(self._depth + 1):
x = stages[i](x)
features.append(x)
return features
def load_state_dict(self, state_dict, **kwargs):
state_dict.pop("fc.bias", None)
state_dict.pop("fc.weight", None)
super().load_state_dict(state_dict, **kwargs)
resnest_weights = {
'timm-resnest14d': {
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest14-9c8fe254.pth'
},
'timm-resnest26d': {
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest26-50eb607c.pth'
},
'timm-resnest50d': {
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50-528c19ca.pth',
},
'timm-resnest101e': {
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest101-22405ba7.pth',
},
'timm-resnest200e': {
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest200-75117900.pth',
},
'timm-resnest269e': {
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest269-0cc87c48.pth',
},
'timm-resnest50d_4s2x40d': {
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_4s2x40d-41d14ed0.pth',
},
'timm-resnest50d_1s4x24d': {
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_1s4x24d-d4a4f76f.pth',
}
}
pretrained_settings = {}
for model_name, sources in resnest_weights.items():
pretrained_settings[model_name] = {}
for source_name, source_url in sources.items():
pretrained_settings[model_name][source_name] = {
"url": source_url,
'input_size': [3, 224, 224],
'input_range': [0, 1],
'mean': [0.485, 0.456, 0.406],
'std': [0.229, 0.224, 0.225],
'num_classes': 1000
}
timm_resnest_encoders = {
'timm-resnest14d': {
'encoder': ResNestEncoder,
"pretrained_settings": pretrained_settings["timm-resnest14d"],
'params': {
'out_channels': (3, 64, 256, 512, 1024, 2048),
'block': ResNestBottleneck,
'layers': [1, 1, 1, 1],
'stem_type': 'deep',
'stem_width': 32,
'avg_down': True,
'base_width': 64,
'cardinality': 1,
'block_args': {'radix': 2, 'avd': True, 'avd_first': False}
}
},
'timm-resnest26d': {
'encoder': ResNestEncoder,
"pretrained_settings": pretrained_settings["timm-resnest26d"],
'params': {
'out_channels': (3, 64, 256, 512, 1024, 2048),
'block': ResNestBottleneck,
'layers': [2, 2, 2, 2],
'stem_type': 'deep',
'stem_width': 32,
'avg_down': True,
'base_width': 64,
'cardinality': 1,
'block_args': {'radix': 2, 'avd': True, 'avd_first': False}
}
},
'timm-resnest50d': {
'encoder': ResNestEncoder,
"pretrained_settings": pretrained_settings["timm-resnest50d"],
'params': {
'out_channels': (3, 64, 256, 512, 1024, 2048),
'block': ResNestBottleneck,
'layers': [3, 4, 6, 3],
'stem_type': 'deep',
'stem_width': 32,
'avg_down': True,
'base_width': 64,
'cardinality': 1,
'block_args': {'radix': 2, 'avd': True, 'avd_first': False}
}
},
'timm-resnest101e': {
'encoder': ResNestEncoder,
"pretrained_settings": pretrained_settings["timm-resnest101e"],
'params': {
'out_channels': (3, 128, 256, 512, 1024, 2048),
'block': ResNestBottleneck,
'layers': [3, 4, 23, 3],
'stem_type': 'deep',
'stem_width': 64,
'avg_down': True,
'base_width': 64,
'cardinality': 1,
'block_args': {'radix': 2, 'avd': True, 'avd_first': False}
}
},
'timm-resnest200e': {
'encoder': ResNestEncoder,
"pretrained_settings": pretrained_settings["timm-resnest200e"],
'params': {
'out_channels': (3, 128, 256, 512, 1024, 2048),
'block': ResNestBottleneck,
'layers': [3, 24, 36, 3],
'stem_type': 'deep',
'stem_width': 64,
'avg_down': True,
'base_width': 64,
'cardinality': 1,
'block_args': {'radix': 2, 'avd': True, 'avd_first': False}
}
},
'timm-resnest269e': {
'encoder': ResNestEncoder,
"pretrained_settings": pretrained_settings["timm-resnest269e"],
'params': {
'out_channels': (3, 128, 256, 512, 1024, 2048),
'block': ResNestBottleneck,
'layers': [3, 30, 48, 8],
'stem_type': 'deep',
'stem_width': 64,
'avg_down': True,
'base_width': 64,
'cardinality': 1,
'block_args': {'radix': 2, 'avd': True, 'avd_first': False}
},
},
'timm-resnest50d_4s2x40d': {
'encoder': ResNestEncoder,
"pretrained_settings": pretrained_settings["timm-resnest50d_4s2x40d"],
'params': {
'out_channels': (3, 64, 256, 512, 1024, 2048),
'block': ResNestBottleneck,
'layers': [3, 4, 6, 3],
'stem_type': 'deep',
'stem_width': 32,
'avg_down': True,
'base_width': 40,
'cardinality': 2,
'block_args': {'radix': 4, 'avd': True, 'avd_first': True}
}
},
'timm-resnest50d_1s4x24d': {
'encoder': ResNestEncoder,
"pretrained_settings": pretrained_settings["timm-resnest50d_1s4x24d"],
'params': {
'out_channels': (3, 64, 256, 512, 1024, 2048),
'block': ResNestBottleneck,
'layers': [3, 4, 6, 3],
'stem_type': 'deep',
'stem_width': 32,
'avg_down': True,
'base_width': 24,
'cardinality': 4,
'block_args': {'radix': 1, 'avd': True, 'avd_first': True}
}
}
}