158 lines
5.3 KiB
Python
158 lines
5.3 KiB
Python
""" Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin`
|
|
|
|
Attributes:
|
|
|
|
_out_channels (list of int): specify number of channels for each encoder feature tensor
|
|
_depth (int): specify number of stages in decoder (in other words number of downsampling operations)
|
|
_in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3)
|
|
|
|
Methods:
|
|
|
|
forward(self, x: torch.Tensor)
|
|
produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of
|
|
shape NCHW (features should be sorted in descending order according to spatial resolution, starting
|
|
with resolution same as input `x` tensor).
|
|
|
|
Input: `x` with shape (1, 3, 64, 64)
|
|
Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes
|
|
[(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8),
|
|
(1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ)
|
|
|
|
also should support number of features according to specified depth, e.g. if depth = 5,
|
|
number of feature tensors = 6 (one with same resolution as input and 5 downsampled),
|
|
depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled).
|
|
"""
|
|
|
|
import torch.nn as nn
|
|
from torchvision.models.vgg import VGG
|
|
from torchvision.models.vgg import make_layers
|
|
from pretrainedmodels.models.torchvision_models import pretrained_settings
|
|
|
|
from ._base import EncoderMixin
|
|
|
|
# fmt: off
|
|
cfg = {
|
|
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
|
|
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
|
|
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
|
|
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
|
|
}
|
|
# fmt: on
|
|
|
|
|
|
class VGGEncoder(VGG, EncoderMixin):
|
|
def __init__(self, out_channels, config, batch_norm=False, depth=5, **kwargs):
|
|
super().__init__(make_layers(config, batch_norm=batch_norm), **kwargs)
|
|
self._out_channels = out_channels
|
|
self._depth = depth
|
|
self._in_channels = 3
|
|
del self.classifier
|
|
|
|
def make_dilated(self, output_stride):
|
|
raise ValueError("'VGG' models do not support dilated mode due to Max Pooling"
|
|
" operations for downsampling!")
|
|
|
|
def get_stages(self):
|
|
stages = []
|
|
stage_modules = []
|
|
for module in self.features:
|
|
if isinstance(module, nn.MaxPool2d):
|
|
stages.append(nn.Sequential(*stage_modules))
|
|
stage_modules = []
|
|
stage_modules.append(module)
|
|
stages.append(nn.Sequential(*stage_modules))
|
|
return stages
|
|
|
|
def forward(self, x):
|
|
stages = self.get_stages()
|
|
|
|
features = []
|
|
for i in range(self._depth + 1):
|
|
x = stages[i](x)
|
|
features.append(x)
|
|
|
|
return features
|
|
|
|
def load_state_dict(self, state_dict, **kwargs):
|
|
keys = list(state_dict.keys())
|
|
for k in keys:
|
|
if k.startswith("classifier"):
|
|
state_dict.pop(k, None)
|
|
super().load_state_dict(state_dict, **kwargs)
|
|
|
|
|
|
vgg_encoders = {
|
|
"vgg11": {
|
|
"encoder": VGGEncoder,
|
|
"pretrained_settings": pretrained_settings["vgg11"],
|
|
"params": {
|
|
"out_channels": (64, 128, 256, 512, 512, 512),
|
|
"config": cfg["A"],
|
|
"batch_norm": False,
|
|
},
|
|
},
|
|
"vgg11_bn": {
|
|
"encoder": VGGEncoder,
|
|
"pretrained_settings": pretrained_settings["vgg11_bn"],
|
|
"params": {
|
|
"out_channels": (64, 128, 256, 512, 512, 512),
|
|
"config": cfg["A"],
|
|
"batch_norm": True,
|
|
},
|
|
},
|
|
"vgg13": {
|
|
"encoder": VGGEncoder,
|
|
"pretrained_settings": pretrained_settings["vgg13"],
|
|
"params": {
|
|
"out_channels": (64, 128, 256, 512, 512, 512),
|
|
"config": cfg["B"],
|
|
"batch_norm": False,
|
|
},
|
|
},
|
|
"vgg13_bn": {
|
|
"encoder": VGGEncoder,
|
|
"pretrained_settings": pretrained_settings["vgg13_bn"],
|
|
"params": {
|
|
"out_channels": (64, 128, 256, 512, 512, 512),
|
|
"config": cfg["B"],
|
|
"batch_norm": True,
|
|
},
|
|
},
|
|
"vgg16": {
|
|
"encoder": VGGEncoder,
|
|
"pretrained_settings": pretrained_settings["vgg16"],
|
|
"params": {
|
|
"out_channels": (64, 128, 256, 512, 512, 512),
|
|
"config": cfg["D"],
|
|
"batch_norm": False,
|
|
},
|
|
},
|
|
"vgg16_bn": {
|
|
"encoder": VGGEncoder,
|
|
"pretrained_settings": pretrained_settings["vgg16_bn"],
|
|
"params": {
|
|
"out_channels": (64, 128, 256, 512, 512, 512),
|
|
"config": cfg["D"],
|
|
"batch_norm": True,
|
|
},
|
|
},
|
|
"vgg19": {
|
|
"encoder": VGGEncoder,
|
|
"pretrained_settings": pretrained_settings["vgg19"],
|
|
"params": {
|
|
"out_channels": (64, 128, 256, 512, 512, 512),
|
|
"config": cfg["E"],
|
|
"batch_norm": False,
|
|
},
|
|
},
|
|
"vgg19_bn": {
|
|
"encoder": VGGEncoder,
|
|
"pretrained_settings": pretrained_settings["vgg19_bn"],
|
|
"params": {
|
|
"out_channels": (64, 128, 256, 512, 512, 512),
|
|
"config": cfg["E"],
|
|
"batch_norm": True,
|
|
},
|
|
},
|
|
}
|