362 lines
14 KiB
Python
362 lines
14 KiB
Python
# ---------------------------------------------------------------
|
|
# Copyright (c) 2021, NVIDIA Corporation. All rights reserved.
|
|
#
|
|
# This work is licensed under the NVIDIA Source Code License
|
|
# ---------------------------------------------------------------
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from functools import partial
|
|
|
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
|
from timm.models.registry import register_model
|
|
from timm.models.vision_transformer import _cfg
|
|
import math
|
|
|
|
|
|
class Mlp(nn.Module):
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
|
super().__init__()
|
|
out_features = out_features or in_features
|
|
hidden_features = hidden_features or in_features
|
|
self.fc1 = nn.Linear(in_features, hidden_features)
|
|
self.dwconv = DWConv(hidden_features)
|
|
self.act = act_layer()
|
|
self.fc2 = nn.Linear(hidden_features, out_features)
|
|
self.drop = nn.Dropout(drop)
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
elif isinstance(m, nn.Conv2d):
|
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
fan_out //= m.groups
|
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
|
if m.bias is not None:
|
|
m.bias.data.zero_()
|
|
|
|
def forward(self, x, H, W):
|
|
x = self.fc1(x)
|
|
x = self.dwconv(x, H, W)
|
|
x = self.act(x)
|
|
x = self.drop(x)
|
|
x = self.fc2(x)
|
|
x = self.drop(x)
|
|
return x
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
|
|
super().__init__()
|
|
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
|
|
|
|
self.dim = dim
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = qk_scale or head_dim ** -0.5
|
|
|
|
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
|
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
self.sr_ratio = sr_ratio
|
|
if sr_ratio > 1:
|
|
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
|
|
self.norm = nn.LayerNorm(dim)
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
elif isinstance(m, nn.Conv2d):
|
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
fan_out //= m.groups
|
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
|
if m.bias is not None:
|
|
m.bias.data.zero_()
|
|
|
|
def forward(self, x, H, W):
|
|
B, N, C = x.shape
|
|
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
|
|
|
if self.sr_ratio > 1:
|
|
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
|
|
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
|
|
x_ = self.norm(x_)
|
|
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
else:
|
|
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
k, v = kv[0], kv[1]
|
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.attn_drop(attn)
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
|
|
return x
|
|
|
|
|
|
class Block(nn.Module):
|
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
|
|
super().__init__()
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = Attention(
|
|
dim,
|
|
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
|
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
|
|
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
self.norm2 = norm_layer(dim)
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
elif isinstance(m, nn.Conv2d):
|
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
fan_out //= m.groups
|
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
|
if m.bias is not None:
|
|
m.bias.data.zero_()
|
|
|
|
def forward(self, x, H, W):
|
|
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
|
|
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
|
|
|
|
return x
|
|
|
|
|
|
class OverlapPatchEmbed(nn.Module):
|
|
""" Image to Patch Embedding
|
|
"""
|
|
|
|
def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
|
|
super().__init__()
|
|
img_size = to_2tuple(img_size)
|
|
patch_size = to_2tuple(patch_size)
|
|
|
|
self.img_size = img_size
|
|
self.patch_size = patch_size
|
|
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
|
|
self.num_patches = self.H * self.W
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
|
|
padding=(patch_size[0] // 2, patch_size[1] // 2))
|
|
self.norm = nn.LayerNorm(embed_dim)
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
elif isinstance(m, nn.Conv2d):
|
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
fan_out //= m.groups
|
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
|
if m.bias is not None:
|
|
m.bias.data.zero_()
|
|
|
|
def forward(self, x):
|
|
x = self.proj(x)
|
|
_, _, H, W = x.shape
|
|
x = x.flatten(2).transpose(1, 2)
|
|
x = self.norm(x)
|
|
|
|
return x, H, W
|
|
|
|
|
|
class MixVisionTransformer(nn.Module):
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
|
|
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
|
|
attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
|
|
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
|
|
super().__init__()
|
|
self.num_classes = num_classes
|
|
self.depths = depths
|
|
|
|
# patch_embed
|
|
self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_chans=in_chans,
|
|
embed_dim=embed_dims[0])
|
|
self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0],
|
|
embed_dim=embed_dims[1])
|
|
self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1],
|
|
embed_dim=embed_dims[2])
|
|
self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2],
|
|
embed_dim=embed_dims[3])
|
|
|
|
# transformer encoder
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
|
cur = 0
|
|
self.block1 = nn.ModuleList([Block(
|
|
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
|
sr_ratio=sr_ratios[0])
|
|
for i in range(depths[0])])
|
|
self.norm1 = norm_layer(embed_dims[0])
|
|
|
|
cur += depths[0]
|
|
self.block2 = nn.ModuleList([Block(
|
|
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
|
sr_ratio=sr_ratios[1])
|
|
for i in range(depths[1])])
|
|
self.norm2 = norm_layer(embed_dims[1])
|
|
|
|
cur += depths[1]
|
|
self.block3 = nn.ModuleList([Block(
|
|
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
|
sr_ratio=sr_ratios[2])
|
|
for i in range(depths[2])])
|
|
self.norm3 = norm_layer(embed_dims[2])
|
|
|
|
cur += depths[2]
|
|
self.block4 = nn.ModuleList([Block(
|
|
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
|
sr_ratio=sr_ratios[3])
|
|
for i in range(depths[3])])
|
|
self.norm4 = norm_layer(embed_dims[3])
|
|
|
|
# classification head
|
|
# self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
elif isinstance(m, nn.Conv2d):
|
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
fan_out //= m.groups
|
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
|
if m.bias is not None:
|
|
m.bias.data.zero_()
|
|
|
|
def reset_drop_path(self, drop_path_rate):
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
|
|
cur = 0
|
|
for i in range(self.depths[0]):
|
|
self.block1[i].drop_path.drop_prob = dpr[cur + i]
|
|
|
|
cur += self.depths[0]
|
|
for i in range(self.depths[1]):
|
|
self.block2[i].drop_path.drop_prob = dpr[cur + i]
|
|
|
|
cur += self.depths[1]
|
|
for i in range(self.depths[2]):
|
|
self.block3[i].drop_path.drop_prob = dpr[cur + i]
|
|
|
|
cur += self.depths[2]
|
|
for i in range(self.depths[3]):
|
|
self.block4[i].drop_path.drop_prob = dpr[cur + i]
|
|
|
|
def freeze_patch_emb(self):
|
|
self.patch_embed1.requires_grad = False
|
|
|
|
@torch.jit.ignore
|
|
def no_weight_decay(self):
|
|
return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better
|
|
|
|
def get_classifier(self):
|
|
return self.head
|
|
|
|
def reset_classifier(self, num_classes, global_pool=''):
|
|
self.num_classes = num_classes
|
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
def forward_features(self, x):
|
|
B = x.shape[0]
|
|
outs = []
|
|
|
|
# stage 1
|
|
x, H, W = self.patch_embed1(x)
|
|
for i, blk in enumerate(self.block1):
|
|
x = blk(x, H, W)
|
|
x = self.norm1(x)
|
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
|
outs.append(x)
|
|
|
|
# stage 2
|
|
x, H, W = self.patch_embed2(x)
|
|
for i, blk in enumerate(self.block2):
|
|
x = blk(x, H, W)
|
|
x = self.norm2(x)
|
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
|
outs.append(x)
|
|
|
|
# stage 3
|
|
x, H, W = self.patch_embed3(x)
|
|
for i, blk in enumerate(self.block3):
|
|
x = blk(x, H, W)
|
|
x = self.norm3(x)
|
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
|
outs.append(x)
|
|
|
|
# stage 4
|
|
x, H, W = self.patch_embed4(x)
|
|
for i, blk in enumerate(self.block4):
|
|
x = blk(x, H, W)
|
|
x = self.norm4(x)
|
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
|
outs.append(x)
|
|
|
|
return outs
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
# x = self.head(x)
|
|
|
|
return x
|
|
|
|
|
|
class DWConv(nn.Module):
|
|
def __init__(self, dim=768):
|
|
super(DWConv, self).__init__()
|
|
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
|
|
|
|
def forward(self, x, H, W):
|
|
B, N, C = x.shape
|
|
x = x.transpose(1, 2).view(B, C, H, W)
|
|
x = self.dwconv(x)
|
|
x = x.flatten(2).transpose(1, 2)
|
|
|
|
return x
|