333 lines
13 KiB
Python
333 lines
13 KiB
Python
from ._base import EncoderMixin
|
|
from timm.models.regnet import RegNet
|
|
import torch.nn as nn
|
|
|
|
|
|
class RegNetEncoder(RegNet, EncoderMixin):
|
|
def __init__(self, out_channels, depth=5, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self._depth = depth
|
|
self._out_channels = out_channels
|
|
self._in_channels = 3
|
|
|
|
del self.head
|
|
|
|
def get_stages(self):
|
|
return [
|
|
nn.Identity(),
|
|
self.stem,
|
|
self.s1,
|
|
self.s2,
|
|
self.s3,
|
|
self.s4,
|
|
]
|
|
|
|
def forward(self, x):
|
|
stages = self.get_stages()
|
|
|
|
features = []
|
|
for i in range(self._depth + 1):
|
|
x = stages[i](x)
|
|
features.append(x)
|
|
|
|
return features
|
|
|
|
def load_state_dict(self, state_dict, **kwargs):
|
|
state_dict.pop("head.fc.weight", None)
|
|
state_dict.pop("head.fc.bias", None)
|
|
super().load_state_dict(state_dict, **kwargs)
|
|
|
|
|
|
regnet_weights = {
|
|
'timm-regnetx_002': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_002-e7e85e5c.pth',
|
|
},
|
|
'timm-regnetx_004': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_004-7d0e9424.pth',
|
|
},
|
|
'timm-regnetx_006': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_006-85ec1baa.pth',
|
|
},
|
|
'timm-regnetx_008': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_008-d8b470eb.pth',
|
|
},
|
|
'timm-regnetx_016': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_016-65ca972a.pth',
|
|
},
|
|
'timm-regnetx_032': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_032-ed0c7f7e.pth',
|
|
},
|
|
'timm-regnetx_040': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_040-73c2a654.pth',
|
|
},
|
|
'timm-regnetx_064': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_064-29278baa.pth',
|
|
},
|
|
'timm-regnetx_080': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_080-7c7fcab1.pth',
|
|
},
|
|
'timm-regnetx_120': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_120-65d5521e.pth',
|
|
},
|
|
'timm-regnetx_160': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_160-c98c4112.pth',
|
|
},
|
|
'timm-regnetx_320': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_320-8ea38b93.pth',
|
|
},
|
|
'timm-regnety_002': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_002-e68ca334.pth',
|
|
},
|
|
'timm-regnety_004': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_004-0db870e6.pth',
|
|
},
|
|
'timm-regnety_006': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_006-c67e57ec.pth',
|
|
},
|
|
'timm-regnety_008': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_008-dc900dbe.pth',
|
|
},
|
|
'timm-regnety_016': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_016-54367f74.pth',
|
|
},
|
|
'timm-regnety_032': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/regnety_032_ra-7f2439f9.pth'
|
|
},
|
|
'timm-regnety_040': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_040-f0d569f9.pth'
|
|
},
|
|
'timm-regnety_064': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_064-0a48325c.pth'
|
|
},
|
|
'timm-regnety_080': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_080-e7f3eb93.pth',
|
|
},
|
|
'timm-regnety_120': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_120-721ba79a.pth',
|
|
},
|
|
'timm-regnety_160': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_160-d64013cd.pth',
|
|
},
|
|
'timm-regnety_320': {
|
|
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_320-ba464b29.pth'
|
|
}
|
|
}
|
|
|
|
pretrained_settings = {}
|
|
for model_name, sources in regnet_weights.items():
|
|
pretrained_settings[model_name] = {}
|
|
for source_name, source_url in sources.items():
|
|
pretrained_settings[model_name][source_name] = {
|
|
"url": source_url,
|
|
'input_size': [3, 224, 224],
|
|
'input_range': [0, 1],
|
|
'mean': [0.485, 0.456, 0.406],
|
|
'std': [0.229, 0.224, 0.225],
|
|
'num_classes': 1000
|
|
}
|
|
|
|
# at this point I am too lazy to copy configs, so I just used the same configs from timm's repo
|
|
|
|
|
|
def _mcfg(**kwargs):
|
|
cfg = dict(se_ratio=0., bottle_ratio=1., stem_width=32)
|
|
cfg.update(**kwargs)
|
|
return cfg
|
|
|
|
|
|
timm_regnet_encoders = {
|
|
'timm-regnetx_002': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnetx_002"],
|
|
'params': {
|
|
'out_channels': (3, 32, 24, 56, 152, 368),
|
|
'cfg': _mcfg(w0=24, wa=36.44, wm=2.49, group_w=8, depth=13)
|
|
},
|
|
},
|
|
'timm-regnetx_004': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnetx_004"],
|
|
'params': {
|
|
'out_channels': (3, 32, 32, 64, 160, 384),
|
|
'cfg': _mcfg(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22)
|
|
},
|
|
},
|
|
'timm-regnetx_006': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnetx_006"],
|
|
'params': {
|
|
'out_channels': (3, 32, 48, 96, 240, 528),
|
|
'cfg': _mcfg(w0=48, wa=36.97, wm=2.24, group_w=24, depth=16)
|
|
},
|
|
},
|
|
'timm-regnetx_008': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnetx_008"],
|
|
'params': {
|
|
'out_channels': (3, 32, 64, 128, 288, 672),
|
|
'cfg': _mcfg(w0=56, wa=35.73, wm=2.28, group_w=16, depth=16)
|
|
},
|
|
},
|
|
'timm-regnetx_016': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnetx_016"],
|
|
'params': {
|
|
'out_channels': (3, 32, 72, 168, 408, 912),
|
|
'cfg': _mcfg(w0=80, wa=34.01, wm=2.25, group_w=24, depth=18)
|
|
},
|
|
},
|
|
'timm-regnetx_032': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnetx_032"],
|
|
'params': {
|
|
'out_channels': (3, 32, 96, 192, 432, 1008),
|
|
'cfg': _mcfg(w0=88, wa=26.31, wm=2.25, group_w=48, depth=25)
|
|
},
|
|
},
|
|
'timm-regnetx_040': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnetx_040"],
|
|
'params': {
|
|
'out_channels': (3, 32, 80, 240, 560, 1360),
|
|
'cfg': _mcfg(w0=96, wa=38.65, wm=2.43, group_w=40, depth=23)
|
|
},
|
|
},
|
|
'timm-regnetx_064': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnetx_064"],
|
|
'params': {
|
|
'out_channels': (3, 32, 168, 392, 784, 1624),
|
|
'cfg': _mcfg(w0=184, wa=60.83, wm=2.07, group_w=56, depth=17)
|
|
},
|
|
},
|
|
'timm-regnetx_080': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnetx_080"],
|
|
'params': {
|
|
'out_channels': (3, 32, 80, 240, 720, 1920),
|
|
'cfg': _mcfg(w0=80, wa=49.56, wm=2.88, group_w=120, depth=23)
|
|
},
|
|
},
|
|
'timm-regnetx_120': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnetx_120"],
|
|
'params': {
|
|
'out_channels': (3, 32, 224, 448, 896, 2240),
|
|
'cfg': _mcfg(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19)
|
|
},
|
|
},
|
|
'timm-regnetx_160': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnetx_160"],
|
|
'params': {
|
|
'out_channels': (3, 32, 256, 512, 896, 2048),
|
|
'cfg': _mcfg(w0=216, wa=55.59, wm=2.1, group_w=128, depth=22)
|
|
},
|
|
},
|
|
'timm-regnetx_320': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnetx_320"],
|
|
'params': {
|
|
'out_channels': (3, 32, 336, 672, 1344, 2520),
|
|
'cfg': _mcfg(w0=320, wa=69.86, wm=2.0, group_w=168, depth=23)
|
|
},
|
|
},
|
|
#regnety
|
|
'timm-regnety_002': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnety_002"],
|
|
'params': {
|
|
'out_channels': (3, 32, 24, 56, 152, 368),
|
|
'cfg': _mcfg(w0=24, wa=36.44, wm=2.49, group_w=8, depth=13, se_ratio=0.25)
|
|
},
|
|
},
|
|
'timm-regnety_004': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnety_004"],
|
|
'params': {
|
|
'out_channels': (3, 32, 48, 104, 208, 440),
|
|
'cfg': _mcfg(w0=48, wa=27.89, wm=2.09, group_w=8, depth=16, se_ratio=0.25)
|
|
},
|
|
},
|
|
'timm-regnety_006': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnety_006"],
|
|
'params': {
|
|
'out_channels': (3, 32, 48, 112, 256, 608),
|
|
'cfg': _mcfg(w0=48, wa=32.54, wm=2.32, group_w=16, depth=15, se_ratio=0.25)
|
|
},
|
|
},
|
|
'timm-regnety_008': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnety_008"],
|
|
'params': {
|
|
'out_channels': (3, 32, 64, 128, 320, 768),
|
|
'cfg': _mcfg(w0=56, wa=38.84, wm=2.4, group_w=16, depth=14, se_ratio=0.25)
|
|
},
|
|
},
|
|
'timm-regnety_016': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnety_016"],
|
|
'params': {
|
|
'out_channels': (3, 32, 48, 120, 336, 888),
|
|
'cfg': _mcfg(w0=48, wa=20.71, wm=2.65, group_w=24, depth=27, se_ratio=0.25)
|
|
},
|
|
},
|
|
'timm-regnety_032': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnety_032"],
|
|
'params': {
|
|
'out_channels': (3, 32, 72, 216, 576, 1512),
|
|
'cfg': _mcfg(w0=80, wa=42.63, wm=2.66, group_w=24, depth=21, se_ratio=0.25)
|
|
},
|
|
},
|
|
'timm-regnety_040': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnety_040"],
|
|
'params': {
|
|
'out_channels': (3, 32, 128, 192, 512, 1088),
|
|
'cfg': _mcfg(w0=96, wa=31.41, wm=2.24, group_w=64, depth=22, se_ratio=0.25)
|
|
},
|
|
},
|
|
'timm-regnety_064': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnety_064"],
|
|
'params': {
|
|
'out_channels': (3, 32, 144, 288, 576, 1296),
|
|
'cfg': _mcfg(w0=112, wa=33.22, wm=2.27, group_w=72, depth=25, se_ratio=0.25)
|
|
},
|
|
},
|
|
'timm-regnety_080': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnety_080"],
|
|
'params': {
|
|
'out_channels': (3, 32, 168, 448, 896, 2016),
|
|
'cfg': _mcfg(w0=192, wa=76.82, wm=2.19, group_w=56, depth=17, se_ratio=0.25)
|
|
},
|
|
},
|
|
'timm-regnety_120': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnety_120"],
|
|
'params': {
|
|
'out_channels': (3, 32, 224, 448, 896, 2240),
|
|
'cfg': _mcfg(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19, se_ratio=0.25)
|
|
},
|
|
},
|
|
'timm-regnety_160': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnety_160"],
|
|
'params': {
|
|
'out_channels': (3, 32, 224, 448, 1232, 3024),
|
|
'cfg': _mcfg(w0=200, wa=106.23, wm=2.48, group_w=112, depth=18, se_ratio=0.25)
|
|
},
|
|
},
|
|
'timm-regnety_320': {
|
|
'encoder': RegNetEncoder,
|
|
"pretrained_settings": pretrained_settings["timm-regnety_320"],
|
|
'params': {
|
|
'out_channels': (3, 32, 232, 696, 1392, 3712),
|
|
'cfg': _mcfg(w0=232, wa=115.89, wm=2.53, group_w=232, depth=20, se_ratio=0.25)
|
|
},
|
|
},
|
|
}
|