diff --git a/DATA_SuPER/DataV_SuPER.py b/Basemap_SuPER/DataV_SuPER.py similarity index 96% rename from DATA_SuPER/DataV_SuPER.py rename to Basemap_SuPER/DataV_SuPER.py index ccaa2db..c2d1e1d 100644 --- a/DATA_SuPER/DataV_SuPER.py +++ b/Basemap_SuPER/DataV_SuPER.py @@ -10,7 +10,7 @@ ------------------------------------------------------------------------------- Authors: Hong Xie -Last Updated: 2025-10-14 +Last Updated: 2025-10-20 =============================================================================== """ @@ -32,7 +32,7 @@ def get_datav_json(accode: str) -> dict: return response.json() -def fetch_and_save_geojson(accode: str, city_name: str, out_dir: str) -> Path: +def fetch_and_save_geojson(accode: str, city_name: str, out_dir: Path) -> Path: """ 获取 DataV 原始数据, 先保存为 .json; 随后清洗属性并另存为 .geojson. """ @@ -190,7 +190,7 @@ def resolve_adcode_by_name(city_name: str, prefer_full: bool = False) -> Optiona return None -def fetch_and_save_geojson_by_name(city_name: str, out_dir: str, prefer_full: bool = False) -> Path: +def fetch_and_save_geojson_by_name(city_name: str, out_dir: Path, prefer_full: bool = False) -> Path: """ 通过城市名称解析 adcode, 并直接拉取与保存 GeoJSON. """ @@ -201,10 +201,11 @@ def fetch_and_save_geojson_by_name(city_name: str, out_dir: str, prefer_full: bo if __name__ == "__main__": + # city_name = "湖北省" # city_name = "武汉市" # city_name = "十堰市" - # city_name = "湖北省" - city_name = "钟祥市" - out_dir = "./data/vectors/" + # city_name = "钟祥市" + # city_name = "" + out_dir = Path("./data/vectors/") out = fetch_and_save_geojson_by_name(city_name, out_dir, prefer_full=False) - print(f"Saved raw JSON and GeoJSON for {city_name}: {out}") + print(f"Saved raw JSON and GeoJSON for {city_name}: {out}.") diff --git a/DATA_SuPER/DEM_SuPER.py b/DATA_SuPER/DEM_SuPER.py index 0018783..e743156 100644 --- a/DATA_SuPER/DEM_SuPER.py +++ b/DATA_SuPER/DEM_SuPER.py @@ -115,7 +115,7 @@ def download_granule(granule_urls: list[str], output_dir: str) -> bool: except Exception as e: # 下载失败时, 先尝试使用 requests 库下载 for url in granule_urls: - response = requests.get(url) + response = requests.get(url, timeout=30) if response.status_code == 200: with open( os.path.join(output_dir, os.path.basename(url)), "wb" @@ -126,8 +126,6 @@ def download_granule(granule_urls: list[str], output_dir: str) -> bool: f"Error downloading data: {response.status_code}. Skipping." ) return False - logging.error(f"Error downloading data: {e}. Skipping.") - return False logging.info("All Data already downloaded.") return True diff --git a/DATA_SuPER/S1_SAR_SuPER.py b/DATA_SuPER/S1_SAR_SuPER.py index f9e4311..4ec4534 100644 --- a/DATA_SuPER/S1_SAR_SuPER.py +++ b/DATA_SuPER/S1_SAR_SuPER.py @@ -19,7 +19,7 @@ RTC-S1 数据产品由美国宇航局喷气推进实验室 (JPL) OPERA 项目组 5. 地形校正 (Terrain Flattening) 6. UTM投影重采样 - 产品特性: - - 时间覆盖: 2021-01-01起 (持续更新) + - 时间覆盖: 2014-01-01起 (历史数据已全覆盖, 并持续更新最新数据) - 空间分辨率: 30米 - 数据格式: GeoTIFF/HDF5 - 进一步预处理: