feat(DEM_SuPER): 添加对ALOS 12.5m DEM的下载支持.

This commit is contained in:
谢泓 2025-10-10 23:37:38 +08:00
parent 64f50ffc0a
commit b872e9e3f1

View File

@ -4,25 +4,35 @@
This module contains functions related to preprocessing DEM data.
For example, elevation, slope, aspect
Step1: Use earthaccess search and download NASADEM Data
Step1: Use earthaccess search and download DEM Data
- NASADEM_HGT
- includes 30m DEM, based on SRTM data
- https://lpdaac.usgs.gov/products/nasadem_hgtv001/
- NASADEM_SC
- includes 30m slope, aspect, based on NASADEM_HGT
- https://lpdaac.usgs.gov/products/nasadem_scv001/
- ALOS PALSAR RTC Project
- includes 12.5, 30m DEM, based on ALOS PALSAR data
- https://www.earthdata.nasa.gov/data/projects/alos-palsar-rtc-project
Step2: Process DEM data
Step2a: Process NASADEM data
- 下载的 NASADEM 均为 *.zip 文件, 需先进行解压
- NASADEM 文件名称结构为: NASADEM_类型_网格编号/网格编号.数据类型
- 高程示例: NASADEM_HGT_n30e113/n30e113.hgt
- 坡度示例: NASADEM_SC_n30e113/n30e113.slope
- 坡向示例: NASADEM_SC_n30e113/n30e113.aspect
- 读取文件按网格进行裁剪并镶嵌, 坡度和坡向数据需要进行缩放处理, 将网格范围的结果保存为 *.tif 文件
- 读取文件按指定范围进行裁剪并镶嵌, 坡度和坡向数据需要进行缩放处理, 将网格范围的结果保存为 *.tif 文件
Step2b: Process ALOS PALSAR RTC Project data
- 下载的 ALOS PALSAR RTC Project 均为 *.zip 文件, 需先进行解压
- ALOS PALSAR RTC Project 文件名称结构为: AP_轨道号_CCC_DDDD_RT1.数据类型.tif
- 高程示例: AP_16112_FBS_F0620_RT1.dem.tif
- 读取文件按指定范围进行裁剪并镶嵌, 坡度和坡向数据需要进行缩放处理, 将网格范围的结果保存为 *.tif 文件
-------------------------------------------------------------------------------
Authors: Hong Xie
Last Updated: 2025-08-05
Last Updated: 2025-10-10
===============================================================================
"""
@ -41,7 +51,12 @@ from rioxarray import open_rasterio
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from utils.common_utils import setup_dask_environment, clip_image, mosaic_images
from utils.common_utils import (
setup_dask_environment,
setup_logging,
clip_image,
mosaic_images,
)
from HLS_SuPER.HLS_Su import earthdata_search
@ -103,17 +118,37 @@ def download_granule(granule_urls: list[str], output_dir: str) -> bool:
return True
def unzip_nasadem_files(zip_file_list: list[str], unzip_dir: str):
def unzip_dem_files(
zip_file_list: list[str], unzip_dir: str, mode_str: str = "NASADEM"
) -> None:
"""
解压下载的 NASADEM ZIP 文件, 并将解压后的文件统一为可读写的 .hgt 格式
解压下载的 DEM ZIP 文件,
若为 NASADEM, 则将其解压后的文件统一为可读写的 .hgt 格式;
若为 ALOSDEM, 则将其解压后的文件统一为可读写的 .tif 格式.
Parameters
----------
zip_file_list: list
待解压的 ZIP 文件列表
unzip_dir: str
解压目录
mode_str: str, optional
解压模式, 默认为 "NASADEM", 可选 "NASADEM", "ALOSDEM"
"""
try:
for zip_path in zip_file_list:
if not zipfile.is_zipfile(zip_path):
continue
with zipfile.ZipFile(zip_path, "r") as zip_ref:
if mode_str == "NASADEM":
# 示例文件名称: NASADEM_HGT_n30e113.zip
# 仅解压包含 .hgt, .slope, .aspect 的文件
for hgt_file in [f for f in zip_ref.namelist() if f.endswith((".hgt", ".slope", ".aspect"))]:
for hgt_file in [
f
for f in zip_ref.namelist()
if f.endswith((".hgt", ".slope", ".aspect"))
]:
# 解压时重命名文件
new_name = (
hgt_file.replace(".hgt", ".elevation.hgt")
@ -124,32 +159,47 @@ def unzip_nasadem_files(zip_file_list: list[str], unzip_dir: str):
if os.path.exists(unzip_file_path):
continue
with zip_ref.open(hgt_file) as source_file:
with open(unzip_file_path, 'wb') as unzip_file:
with open(unzip_file_path, "wb") as unzip_file:
unzip_file.write(source_file.read())
elif mode_str == "ALOSDEM":
# 仅解压包含 dem.tif 的文件
for tif_file in [
f for f in zip_ref.namelist() if f.endswith("dem.tif")
]:
new_name = tif_file.replace("dem.tif", "elevation.tif")
unzip_file_path = os.path.join(unzip_dir, new_name)
if os.path.exists(unzip_file_path):
continue
with zip_ref.open(tif_file) as source_file:
with open(unzip_file_path, "wb") as unzip_file:
unzip_file.write(source_file.read())
except Exception as e:
logging.error(f"Error unzipping NASADEM to {unzip_dir}: {e}")
logging.error(f"Error unzipping {mode_str} to {unzip_dir}: {e}")
return
def process_granule(
unzip_dir: str,
output_dir: str,
mode_str: str,
name: str,
roi: list,
clip=True,
tile_id: str = None,
) -> bool:
"""
读取解压并重命名处理后的指定类型 NASADEM 数据并进行预处理, 包括读取, 裁剪, 镶嵌, 并对坡度坡向进行缩放
读取解压并重命名处理后的指定类型 DEM 数据并进行预处理, 包括读取, 裁剪, 镶嵌, 并对坡度坡向进行缩放
Parameters
----------
unzip_dir: str
解压后的 NASADEM 文件根目录
解压后的 DEM 文件根目录
output_dir: str
输出根目录
mode_str: str
数据模式, 可选 NASADEM, ALOSDEM
name: str
数据类型, 包括 elevation, slope, aspect
数据类型, 可选 elevation, slope, aspect
roi: list
网格范围
clip: bool
@ -163,17 +213,19 @@ def process_granule(
处理状态 True or False
"""
if mode_str == "NASADEM":
dem_file_list = glob.glob(os.path.join(unzip_dir, f"*{name}.hgt"))
out_tif_name = f"DEM.NASADEM.{tile_id}.2000.{name}.tif"
elif mode_str == "ALOSDEM":
dem_file_list = glob.glob(os.path.join(unzip_dir, f"*{name}.tif"))
out_tif_name = f"DEM.ALOSDEM.{tile_id}.2014.{name}.tif"
output_file = os.path.join(output_dir, out_tif_name)
if not os.path.isfile(output_file):
try:
dem_raster_list = []
for dem_path in dem_file_list:
dem = (
open_rasterio(dem_path)
.squeeze(dim="band", drop=True)
.rename(name)
open_rasterio(dem_path).squeeze(dim="band", drop=True).rename(name)
)
if name == "slope" or name == "aspect":
org_attrs = dem.attrs
@ -190,7 +242,9 @@ def process_granule(
dem_mosaiced = mosaic_images(dem_raster_list, nodata=-32768)
if roi is not None and clip:
dem_mosaiced = clip_image(dem_mosaiced, roi, clip_by_box=True)
dem_mosaiced.rio.to_raster(output_file, driver="COG", compress="DEFLATE")
dem_mosaiced.rio.to_raster(
output_file, driver="COG", compress="DEFLATE"
)
except Exception as e:
logging.error(f"Error processing files in {name}: {e}")
return False
@ -200,54 +254,72 @@ def process_granule(
return True
def main(region: list, asset_name: list, tile_id: str):
def main(
output_root_dir: str,
region: list,
asset_name: list,
tile_id: str,
mode_str: str = "NASADEM",
):
bbox = tuple(list(region.total_bounds))
# 示例文件名称: NASADEM_HGT_n30e113.zip
results_urls = []
output_root_dir = ".\\data\\DEM\\NASADEM"
mode_str = mode_str.upper()
output_root_dir = os.path.join(output_root_dir, mode_str)
# 放置下载的 ZIP 文件
download_dir = os.path.join(output_root_dir, "ZIP")
# 放置解压并预处理后的文件
unzip_dir = os.path.join(download_dir, "UNZIP")
output_dir = os.path.join(output_root_dir, "TIF", tile_id)
os.makedirs(download_dir, exist_ok=True)
os.makedirs(unzip_dir, exist_ok=True)
os.makedirs(output_dir, exist_ok=True)
results_urls_file = f"{output_root_dir}\\NASADEM_{tile_id}_results_urls.json"
results_urls_file = os.path.join(
output_root_dir, f"{mode_str}_{tile_id}_results_urls.json"
)
# 配置日志
logs_file = os.path.join(output_root_dir, f"{mode_str}_{tile_id}_SuPER.log")
setup_logging(logs_file)
# 默认覆盖上一次检索记录
results_urls = earthdata_search(asset_name, roi=bbox)
with open(results_urls_file, "w") as f:
json.dump(results_urls, f)
# 构造待解压的文件列表
zip_file_list = [os.path.join(download_dir, os.path.basename(result[0])) for result in results_urls]
logging.info(f"Found {len(results_urls)} {mode_str} granules.")
if len(results_urls) == 0:
return
# 配置日志
logging.basicConfig(
level=logging.INFO,
format="%(levelname)s:%(asctime)s ||| %(message)s",
handlers=[
logging.StreamHandler(sys.stdout),
logging.FileHandler(f"{output_root_dir}\\NASADEM_SuPER.log"),
],
)
logging.info(f"Found {len(results_urls)} NASADEM granules.")
# 构造待解压的文件列表
zip_file_list = [
os.path.join(download_dir, os.path.basename(result[0]))
for result in results_urls
]
client = dask.distributed.Client(timeout=60, memory_limit="8GB")
client.run(setup_dask_environment)
all_start_time = time.time()
client.scatter(results_urls)
logging.info(f"Start processing NASADEM ...")
logging.info(f"Start processing {mode_str} ...")
download_tasks = [
dask.delayed(download_granule)(granule_url, download_dir)
for granule_url in results_urls
]
unzip_tasks = dask.delayed(unzip_nasadem_files)(zip_file_list, unzip_dir)
# 根据模式传递正确的解压标识
unzip_tasks = dask.delayed(unzip_dem_files)(zip_file_list, unzip_dir, mode_str)
if mode_str == "NASADEM":
process_tasks = [
dask.delayed(process_granule)(
unzip_dir, output_dir, name, region, True, tile_id
unzip_dir, output_dir, mode_str, name, region, True, tile_id
)
for name in ["elevation", "slope", "aspect"]
]
elif mode_str == "ALOSDEM":
process_tasks = [
dask.delayed(process_granule)(
unzip_dir, output_dir, mode_str, "elevation", region, True, tile_id
)
]
dask.compute(*download_tasks)
dask.compute(unzip_tasks)
@ -256,14 +328,19 @@ def main(region: list, asset_name: list, tile_id: str):
client.close()
all_total_time = time.time() - all_start_time
logging.info(
f"All NASADEM Downloading complete and proccessed. Total time: {all_total_time} seconds"
f"All {mode_str} Downloading complete and processed. Total time: {all_total_time} seconds"
)
if __name__ == "__main__":
earthaccess.login(persist=True)
# region = gpd.read_file("./data/vectors/wuling_guanqu_polygon.geojson")
tile_id = "49REL"
# tile_id = "49REL"
tile_id = "Wuhan"
region = gpd.read_file(f"./data/vectors/{tile_id}.geojson")
asset_name = ["NASADEM_HGT", "NASADEM_SC"]
main(region, asset_name, tile_id)
# asset_name = ["NASADEM_HGT", "NASADEM_SC"]
# mode_str = "NASADEM"
asset_name = ["ALOS_PSR_RTC_HIGH"]
mode_str = "ALOSDEM"
output_root_dir = ".\\data\\DEM"
main(output_root_dir, region, asset_name, tile_id, mode_str)