""" 访问阿里云 DataV 下载的行政区边界数据保存为原始 JSON, 有部分字段与GDAL不兼容, 导致无法 直接读取, 需要先清洗再保存为 GeoJSON. - 官方地址: https://datav.aliyun.com/portal/school/atlas/area_selector - Step1: 按"城市名称"解析为行政区划代码 (adcode); - Step2: 将 DataV 原始数据保存为 `城市名称.json` 文件; - Step3: 移除不兼容 GDAL/GeoPandas 的属性字段 (parent, center, centroid, acroutes); - Step4: 将清洗后的结果写出为 `城市名称.geojson` 文件. ------------------------------------------------------------------------------- Authors: Hong Xie Last Updated: 2025-10-20 =============================================================================== """ import json import requests from pathlib import Path from typing import Optional import re def get_datav_json(accode: str) -> dict: """ 从 DataV 接口获取行政区边界的原始 JSON 数据并返回字典. """ # 使用路径式接口, 支持如 "420100" 或 "420100_full" url = f"https://geo.datav.aliyun.com/areas_v3/bound/{accode}.json" response = requests.get(url, timeout=15) response.raise_for_status() return response.json() def fetch_and_save_geojson(accode: str, city_name: str, out_dir: Path) -> Path: """ 获取 DataV 原始数据, 先保存为 .json; 随后清洗属性并另存为 .geojson. """ raw_data = get_datav_json(accode) # 处理 features: 移除不兼容 GeoPandas 的属性 def sanitize_properties(props: dict) -> dict: out = {} for k, v in props.items(): # 移除嵌套对象 if k in ("parent", "center", "centroid", "acroutes"): continue # 仅保留标量类型; 丢弃其他嵌套结构 if isinstance(v, (str, int, float, bool)) or v is None: out[k] = v return out # 输出路径(确保目录存在) out_dir_path = Path(out_dir) out_dir_path.mkdir(parents=True, exist_ok=True) # 先保存原始 JSON(未清洗) raw_json_path = out_dir_path / f"{city_name}.json" with raw_json_path.open("w", encoding="utf-8") as f: json.dump(raw_data, f, ensure_ascii=False) # 再保存清洗后的 GeoJSON out_path = out_dir_path / f"{city_name}.geojson" # 深拷贝后进行清洗, 避免影响原始数据 data = json.loads(json.dumps(raw_data)) features = data.get("features", []) for feature in features: props = feature.get("properties", {}) feature["properties"] = sanitize_properties(props) # 写出为 .geojson, 确保 UTF-8 且保留中文字符 with out_path.open("w", encoding="utf-8") as f: json.dump(data, f, ensure_ascii=False) return out_path def _normalize_name(name: str) -> str: name = name.strip() # 简单去除常见后缀提高匹配鲁棒性 for suffix in ("市", "省", "地区", "盟", "自治州", "自治县", "特别行政区"): if name.endswith(suffix): name = name[: -len(suffix)] return name def _name_matches_exact(target: str, candidate: str) -> bool: return _normalize_name(target) == _normalize_name(candidate) def resolve_adcode_by_name(city_name: str, prefer_full: bool = False) -> Optional[str]: """ 通过城市名称解析 DataV 行政区划代码. 优先遍历全国(100000_full)和各省级(full)数据进行匹配. 如果在省级数据中未找到, 会进一步搜索地级市下的区县数据. 返回如 "420100" 或 "420100_full", 找不到则返回 None. """ # 先在全国层级中尝试匹配(通常包含省级与直辖市) try: cn = requests.get( "https://geo.datav.aliyun.com/areas_v3/bound/100000_full.json", timeout=20, ).json() except Exception: cn = None target = city_name contains_province_candidate = None provinces = [] if cn: # 先尝试在全国数据中直接匹配省级名称 for feat in cn.get("features", []): props = feat.get("properties", {}) if props.get("level") == "province": name = props.get("name", "") code = str(props.get("adcode", "")) if re.fullmatch(r"\d{6}", code): if _name_matches_exact(target, name): return f"{code}_full" if prefer_full else code if _normalize_name(target) in _normalize_name(name): contains_province_candidate = code provinces.append(code) # 遍历各省级行政区, 精确匹配城市名 cities_to_search = [] # 收集需要进一步搜索的地级市 for pcode in provinces: try: prov = requests.get( f"https://geo.datav.aliyun.com/areas_v3/bound/{pcode}_full.json", timeout=20, ).json() except Exception: continue exact_candidate = None contains_candidate = None for feat in prov.get("features", []): props = feat.get("properties", {}) level = props.get("level") name = props.get("name", "") code = str(props.get("adcode", "")) # 仅考虑城市或区县, 且编码为6位数字 if level in ("city", "district") and re.fullmatch(r"\d{6}", code): if _name_matches_exact(target, name): exact_candidate = code break # 作为回退: 包含匹配, 但不立即返回, 继续寻找精确匹配 if _normalize_name(target) in _normalize_name(name): contains_candidate = code # 收集地级市代码,用于后续搜索县级市 if level == "city" and re.fullmatch(r"\d{6}", code): cities_to_search.append(code) if exact_candidate: return f"{exact_candidate}_full" if prefer_full else exact_candidate if contains_candidate: return f"{contains_candidate}_full" if prefer_full else contains_candidate # 如果在省级数据中未找到,搜索地级市下的区县数据(如县级市) for city_code in cities_to_search: try: city_data = requests.get( f"https://geo.datav.aliyun.com/areas_v3/bound/{city_code}_full.json", timeout=20, ).json() except Exception: continue for feat in city_data.get("features", []): props = feat.get("properties", {}) level = props.get("level") name = props.get("name", "") code = str(props.get("adcode", "")) # 检查区县级别的行政区(包括县级市) if level == "district" and re.fullmatch(r"\d{6}", code): if _name_matches_exact(target, name): return f"{code}_full" if prefer_full else code # 包含匹配作为备选 if _normalize_name(target) in _normalize_name(name): # 找到包含匹配的县级市,直接返回 return f"{code}_full" if prefer_full else code # 如果城市/区县未匹配到, 回退使用省级包含匹配 if contains_province_candidate: return f"{contains_province_candidate}_full" if prefer_full else contains_province_candidate return None def fetch_and_save_geojson_by_name(city_name: str, out_dir: Path, prefer_full: bool = False) -> Path: """ 通过城市名称解析 adcode, 并直接拉取与保存 GeoJSON. """ code = resolve_adcode_by_name(city_name, prefer_full=prefer_full) if not code: raise ValueError(f"无法通过名称解析到行政区划代码: {city_name}") return fetch_and_save_geojson(code, city_name, out_dir) if __name__ == "__main__": # city_name = "湖北省" # city_name = "武汉市" # city_name = "十堰市" # city_name = "钟祥市" # city_name = "" out_dir = Path("./data/vectors/") out = fetch_and_save_geojson_by_name(city_name, out_dir, prefer_full=False) print(f"Saved raw JSON and GeoJSON for {city_name}: {out}.")