feat(GEE_Scripts): 新增土地覆盖分类数据下载脚本.
This commit is contained in:
parent
8f22938c50
commit
b8a617ed8d
267
GEE_Scripts/LULC_download.js
Normal file
267
GEE_Scripts/LULC_download.js
Normal file
@ -0,0 +1,267 @@
|
||||
/**
|
||||
* 土地覆盖分类数据下载
|
||||
*
|
||||
* @author CVEO Team
|
||||
* @date 2025-10-27
|
||||
*
|
||||
* 1. 加载 ESA WorldCover, Dynamic World 等公开土地覆盖数据
|
||||
* - ESA WorldCover 2021 V200 版本: 11 类地物
|
||||
* - Dynamic World V1 版本: 9 类地物
|
||||
* 2. 加载 Sentinel-2 数据
|
||||
* 3. 导出 COG 云优化并填补缺失值的 GeoTIFF 影像 (大区域 GEE 自动分块下载)
|
||||
*/
|
||||
|
||||
// 加载研究区域和影像
|
||||
// var region_name = "武汉市";
|
||||
// var region_name_en = "Wuhan";
|
||||
// var region = allCites.filter(ee.Filter.eq("市", region_name));
|
||||
var region_name = "49REL";
|
||||
var region_name_en = region_name;
|
||||
var region = grid;
|
||||
var year = 2025;
|
||||
var start_date = year + "-01-01";
|
||||
var end_date = year + "-12-31";
|
||||
var target_month = 5; // 指定月份
|
||||
var cloud_threshold = 60;
|
||||
// Use 'cs' or 'cs_cdf', depending on your use case; see docs for guidance.
|
||||
var QA_BAND = "cs_cdf";
|
||||
// The threshold for masking; values between 0.50 and 0.65 generally work well.
|
||||
// Higher values will remove thin clouds, haze & cirrus shadows.
|
||||
var CLEAR_THRESHOLD = 0.7;
|
||||
// Sentinel-2的B8A波段(20m)可能更适合代表近红外波段
|
||||
// var s2Bands = ["B2", "B3", "B4", "B8", "B11", "B12"];
|
||||
var s2Bands = ["B2", "B3", "B4", "B8A", "B11", "B12"];
|
||||
var commonBands = ["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2"];
|
||||
var bounds = region.geometry().bounds();
|
||||
var common_filter = ee.Filter.and(
|
||||
ee.Filter.bounds(bounds),
|
||||
ee.Filter.date(start_date, end_date)
|
||||
);
|
||||
|
||||
/**
|
||||
* 基于 Cloud Score+ 云掩膜
|
||||
* @param {ee.Image} image Sentinel-2 image
|
||||
* @return {ee.Image} cloud masked Sentinel-2 image
|
||||
*/
|
||||
function maskS2cloudsByCS(image) {
|
||||
var cloudMask = image.select(QA_BAND).gte(CLEAR_THRESHOLD);
|
||||
image = image.updateMask(cloudMask);
|
||||
return image
|
||||
.copyProperties(image)
|
||||
.copyProperties(image, ["system:time_start", "system:index", "system:id"]);
|
||||
}
|
||||
|
||||
/**
|
||||
* 按照属性值对影像集合进行排序
|
||||
* @param {ee.ImageCollection} collection 影像集合
|
||||
* @param {ee.Geometry} region 目标区域
|
||||
* @return {ee.ImageCollection} 排序后的影像集合
|
||||
*/
|
||||
function sortedByPriority(collection, region) {
|
||||
// 1. 计算每张影像的有效像素 (非空像素) 覆盖面积
|
||||
var withArea = collection.map(function (image) {
|
||||
var area = image
|
||||
.mask()
|
||||
.reduceRegion({
|
||||
reducer: ee.Reducer.sum(),
|
||||
geometry: region,
|
||||
scale: 10,
|
||||
maxPixels: 1e9,
|
||||
})
|
||||
.values()
|
||||
.get(0);
|
||||
return image.set("coverage_area", area);
|
||||
});
|
||||
|
||||
// 2. 剔除覆盖面积为 0 的影像
|
||||
withArea = withArea.filter(ee.Filter.gt("coverage_area", 0));
|
||||
|
||||
// 3. 根据云量 (降序) 和覆盖率 (升序) 对影像进行综合排序
|
||||
// 考虑影像集合是以栈的形式 (先入后出) 组织的, 在进行 mosaic 合成时, 从最后一张影像开始合并, 逆转排序
|
||||
// sort 默认升序 True
|
||||
var sorted = withArea
|
||||
.sort("CLOUDY_PIXEL_PERCENTAGE", false)
|
||||
.sort("coverage_area");
|
||||
return ee.ImageCollection(sorted);
|
||||
}
|
||||
|
||||
// 加载Sentinel-2 L2A数据
|
||||
// Cloud Score+ image collection.
|
||||
// Note Cloud Score+ is produced from Sentinel-2 level 1C data and can be applied to either L1C or L2A collections.
|
||||
var S2csPlus = ee.ImageCollection("GOOGLE/CLOUD_SCORE_PLUS/V1/S2_HARMONIZED");
|
||||
var S2dataset = ee
|
||||
.ImageCollection("COPERNICUS/S2_SR_HARMONIZED")
|
||||
.filter(common_filter)
|
||||
.filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE", cloud_threshold))
|
||||
.select(s2Bands, commonBands)
|
||||
.linkCollection(S2csPlus, [QA_BAND])
|
||||
.map(maskS2cloudsByCS);
|
||||
var target_s2 = sortedByPriority(
|
||||
S2dataset.filter(
|
||||
ee.Filter.calendarRange(target_month, target_month, "month")
|
||||
),
|
||||
region
|
||||
);
|
||||
var s2_img = ee.Image(target_s2.median());
|
||||
|
||||
// 加载ESA WorldCover数据
|
||||
var ESA_worldcover = ee.ImageCollection("ESA/WorldCover/v200").first();
|
||||
var wc_img = ee.Image(ESA_worldcover.clip(region));
|
||||
var wc_class_names = {
|
||||
"Tree cover": 10,
|
||||
Shrubland: 20,
|
||||
Grassland: 30,
|
||||
Cropland: 40,
|
||||
"Built-up": 50,
|
||||
"Bare / sparse vegetation": 60,
|
||||
"Snow and ice": 70,
|
||||
"Permanent water bodies": 80,
|
||||
"Herbaceous wetland": 90,
|
||||
Mangroves: 95,
|
||||
"Moss and lichen": 100,
|
||||
};
|
||||
// 统计各类别覆盖面积
|
||||
var wc_class_area = wc_img
|
||||
.reduceRegion({
|
||||
reducer: ee.Reducer.frequencyHistogram(),
|
||||
geometry: region,
|
||||
scale: 10,
|
||||
maxPixels: 1e13,
|
||||
})
|
||||
.get("Map");
|
||||
print("ESA WorldCover 2021 v200");
|
||||
print("各类别名称:", wc_class_names);
|
||||
print("各类别覆盖面积:", wc_class_area);
|
||||
|
||||
// 加载Dynamic World数据
|
||||
var DWdataset = ee
|
||||
.ImageCollection("GOOGLE/DYNAMICWORLD/V1")
|
||||
.filter(common_filter)
|
||||
.select("label");
|
||||
// mode() 取出现次数最多的类别作为合成后的类别
|
||||
var dw_img = ee.Image(DWdataset.mode().clip(region));
|
||||
var dw_class_names = {
|
||||
water: 0,
|
||||
trees: 1,
|
||||
grass: 2,
|
||||
flooded_vegetation: 3,
|
||||
crops: 4,
|
||||
shrub_and_scrub: 5,
|
||||
built: 6,
|
||||
bare: 7,
|
||||
snow_and_ice: 8,
|
||||
};
|
||||
var built_img = dw_img.updateMask(dw_img.eq(dw_class_names.built));
|
||||
var crop_img = dw_img.updateMask(dw_img.eq(dw_class_names.crops));
|
||||
var flood_img = dw_img.updateMask(dw_img.eq(dw_class_names.flooded_vegetation));
|
||||
// 统计各类别覆盖面积
|
||||
var dw_class_area = dw_img
|
||||
.reduceRegion({
|
||||
reducer: ee.Reducer.frequencyHistogram(),
|
||||
geometry: region,
|
||||
scale: 10,
|
||||
maxPixels: 1e13,
|
||||
})
|
||||
.get("label");
|
||||
print("Dynamic World v1");
|
||||
print("各类别名称:", dw_class_names);
|
||||
print("各类别覆盖面积:", dw_class_area);
|
||||
|
||||
var VIS_PALETTE = [
|
||||
"419bdf",
|
||||
"397d49",
|
||||
"88b053",
|
||||
"7a87c6",
|
||||
"e49635",
|
||||
"dfc35a",
|
||||
"c4281b",
|
||||
"a59b8f",
|
||||
"b39fe1",
|
||||
];
|
||||
var DW_vis = {
|
||||
min: 0,
|
||||
max: 8,
|
||||
palette: VIS_PALETTE,
|
||||
};
|
||||
|
||||
var true_rgb_vis = {
|
||||
bands: ["Red", "Green", "Blue"],
|
||||
min: 0.0,
|
||||
max: 3000,
|
||||
};
|
||||
|
||||
var false_rgb_vis = {
|
||||
min: 0.0,
|
||||
max: 4000,
|
||||
gamma: 1.4,
|
||||
bands: ["NIR", "Red", "Green"],
|
||||
};
|
||||
|
||||
var styling = {
|
||||
color: "red",
|
||||
fillColor: "00000000",
|
||||
};
|
||||
|
||||
var WC_vis = {
|
||||
bands: ["Map"],
|
||||
};
|
||||
|
||||
Map.centerObject(region, 9);
|
||||
Map.addLayer(region.style(styling), {}, region_name);
|
||||
Map.addLayer(wc_img, WC_vis, "ESA 2021 Landcover");
|
||||
Map.addLayer(dw_img, DW_vis, "Dynamic World LULC");
|
||||
Map.addLayer(
|
||||
s2_img,
|
||||
true_rgb_vis,
|
||||
year + "-" + target_month + " Sentinel-2 True RGB",
|
||||
false
|
||||
);
|
||||
Map.addLayer(
|
||||
s2_img,
|
||||
false_rgb_vis,
|
||||
year + "-" + target_month + " Sentinel-2 False RGB",
|
||||
false
|
||||
);
|
||||
// Map.addLayer(built_img, DW_vis, 'Built DW LULC');
|
||||
// Map.addLayer(crop_img, DW_vis, "Crop DW LULC");
|
||||
// Map.addLayer(flood_img, DW_vis, "Flood DW LULC");
|
||||
|
||||
// 导出裁剪处理后的土地覆盖数据
|
||||
var fileName = region_name_en + "_ESA_WorldCover_2021_v200";
|
||||
// 区域过大, 需要先将 wc_img 划分为四块网格分开下载
|
||||
var bounds = region.geometry().bounds();
|
||||
var coords = ee.List(bounds.coordinates().get(0));
|
||||
|
||||
var minX = ee.Number(ee.List(coords.get(0)).get(0));
|
||||
var minY = ee.Number(ee.List(coords.get(0)).get(1));
|
||||
var maxX = ee.Number(ee.List(coords.get(2)).get(0));
|
||||
var maxY = ee.Number(ee.List(coords.get(2)).get(1));
|
||||
|
||||
var midX = minX.add(maxX).divide(2);
|
||||
var midY = minY.add(maxY).divide(2);
|
||||
|
||||
var grid1 = ee.Geometry.Rectangle([minX, minY, midX, midY]);
|
||||
var grid2 = ee.Geometry.Rectangle([midX, minY, maxX, midY]);
|
||||
var grid3 = ee.Geometry.Rectangle([minX, midY, midX, maxY]);
|
||||
var grid4 = ee.Geometry.Rectangle([midX, midY, maxX, maxY]);
|
||||
|
||||
var grids = [grid1, grid2, grid3, grid4];
|
||||
|
||||
for (var i = 0; i < grids.length; i++) {
|
||||
var grid_region = grids[i];
|
||||
var clipped_img = wc_img.clip(grid_region);
|
||||
var grid_fileName = fileName + "_grid_" + (i + 1);
|
||||
Export.image.toDrive({
|
||||
image: clipped_img,
|
||||
description: grid_fileName,
|
||||
folder: "LULC",
|
||||
region: grid_region,
|
||||
scale: 10,
|
||||
maxPixels: 1e13, // GEE 最多支持 1e8 像素, 当超过时会自动分块
|
||||
fileFormat: "GeoTIFF",
|
||||
// 导出COG云优化的GeoTIFF影像
|
||||
formatOptions: {
|
||||
cloudOptimized: true,
|
||||
},
|
||||
});
|
||||
}
|
||||
Loading…
x
Reference in New Issue
Block a user