212 lines
8.2 KiB
Python

"""
访问阿里云 DataV 下载的行政区边界数据保存为原始 JSON, 有部分字段与GDAL不兼容, 导致无法
直接读取, 需要先清洗再保存为 GeoJSON.
- 官方地址: https://datav.aliyun.com/portal/school/atlas/area_selector
- Step1: 按"城市名称"解析为行政区划代码 (adcode);
- Step2: 将 DataV 原始数据保存为 `城市名称.json` 文件;
- Step3: 移除不兼容 GDAL/GeoPandas 的属性字段 (parent, center, centroid, acroutes);
- Step4: 将清洗后的结果写出为 `城市名称.geojson` 文件.
-------------------------------------------------------------------------------
Authors: Hong Xie
Last Updated: 2025-10-20
===============================================================================
"""
import json
import requests
from pathlib import Path
from typing import Optional
import re
def get_datav_json(accode: str) -> dict:
"""
从 DataV 接口获取行政区边界的原始 JSON 数据并返回字典.
"""
# 使用路径式接口, 支持如 "420100" 或 "420100_full"
url = f"https://geo.datav.aliyun.com/areas_v3/bound/{accode}.json"
response = requests.get(url, timeout=15)
response.raise_for_status()
return response.json()
def fetch_and_save_geojson(accode: str, city_name: str, out_dir: Path) -> Path:
"""
获取 DataV 原始数据, 先保存为 .json; 随后清洗属性并另存为 .geojson.
"""
raw_data = get_datav_json(accode)
# 处理 features: 移除不兼容 GeoPandas 的属性
def sanitize_properties(props: dict) -> dict:
out = {}
for k, v in props.items():
# 移除嵌套对象
if k in ("parent", "center", "centroid", "acroutes"):
continue
# 仅保留标量类型; 丢弃其他嵌套结构
if isinstance(v, (str, int, float, bool)) or v is None:
out[k] = v
return out
# 输出路径(确保目录存在)
out_dir_path = Path(out_dir)
out_dir_path.mkdir(parents=True, exist_ok=True)
# 先保存原始 JSON(未清洗)
raw_json_path = out_dir_path / f"{city_name}.json"
with raw_json_path.open("w", encoding="utf-8") as f:
json.dump(raw_data, f, ensure_ascii=False)
# 再保存清洗后的 GeoJSON
out_path = out_dir_path / f"{city_name}.geojson"
# 深拷贝后进行清洗, 避免影响原始数据
data = json.loads(json.dumps(raw_data))
features = data.get("features", [])
for feature in features:
props = feature.get("properties", {})
feature["properties"] = sanitize_properties(props)
# 写出为 .geojson, 确保 UTF-8 且保留中文字符
with out_path.open("w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False)
return out_path
def _normalize_name(name: str) -> str:
name = name.strip()
# 简单去除常见后缀提高匹配鲁棒性
for suffix in ("", "", "地区", "", "自治州", "自治县", "特别行政区"):
if name.endswith(suffix):
name = name[: -len(suffix)]
return name
def _name_matches_exact(target: str, candidate: str) -> bool:
return _normalize_name(target) == _normalize_name(candidate)
def resolve_adcode_by_name(city_name: str, prefer_full: bool = False) -> Optional[str]:
"""
通过城市名称解析 DataV 行政区划代码.
优先遍历全国(100000_full)和各省级(full)数据进行匹配.
如果在省级数据中未找到, 会进一步搜索地级市下的区县数据.
返回如 "420100""420100_full", 找不到则返回 None.
"""
# 先在全国层级中尝试匹配(通常包含省级与直辖市)
try:
cn = requests.get(
"https://geo.datav.aliyun.com/areas_v3/bound/100000_full.json",
timeout=20,
).json()
except Exception:
cn = None
target = city_name
contains_province_candidate = None
provinces = []
if cn:
# 先尝试在全国数据中直接匹配省级名称
for feat in cn.get("features", []):
props = feat.get("properties", {})
if props.get("level") == "province":
name = props.get("name", "")
code = str(props.get("adcode", ""))
if re.fullmatch(r"\d{6}", code):
if _name_matches_exact(target, name):
return f"{code}_full" if prefer_full else code
if _normalize_name(target) in _normalize_name(name):
contains_province_candidate = code
provinces.append(code)
# 遍历各省级行政区, 精确匹配城市名
cities_to_search = [] # 收集需要进一步搜索的地级市
for pcode in provinces:
try:
prov = requests.get(
f"https://geo.datav.aliyun.com/areas_v3/bound/{pcode}_full.json",
timeout=20,
).json()
except Exception:
continue
exact_candidate = None
contains_candidate = None
for feat in prov.get("features", []):
props = feat.get("properties", {})
level = props.get("level")
name = props.get("name", "")
code = str(props.get("adcode", ""))
# 仅考虑城市或区县, 且编码为6位数字
if level in ("city", "district") and re.fullmatch(r"\d{6}", code):
if _name_matches_exact(target, name):
exact_candidate = code
break
# 作为回退: 包含匹配, 但不立即返回, 继续寻找精确匹配
if _normalize_name(target) in _normalize_name(name):
contains_candidate = code
# 收集地级市代码,用于后续搜索县级市
if level == "city" and re.fullmatch(r"\d{6}", code):
cities_to_search.append(code)
if exact_candidate:
return f"{exact_candidate}_full" if prefer_full else exact_candidate
if contains_candidate:
return f"{contains_candidate}_full" if prefer_full else contains_candidate
# 如果在省级数据中未找到,搜索地级市下的区县数据(如县级市)
for city_code in cities_to_search:
try:
city_data = requests.get(
f"https://geo.datav.aliyun.com/areas_v3/bound/{city_code}_full.json",
timeout=20,
).json()
except Exception:
continue
for feat in city_data.get("features", []):
props = feat.get("properties", {})
level = props.get("level")
name = props.get("name", "")
code = str(props.get("adcode", ""))
# 检查区县级别的行政区(包括县级市)
if level == "district" and re.fullmatch(r"\d{6}", code):
if _name_matches_exact(target, name):
return f"{code}_full" if prefer_full else code
# 包含匹配作为备选
if _normalize_name(target) in _normalize_name(name):
# 找到包含匹配的县级市,直接返回
return f"{code}_full" if prefer_full else code
# 如果城市/区县未匹配到, 回退使用省级包含匹配
if contains_province_candidate:
return f"{contains_province_candidate}_full" if prefer_full else contains_province_candidate
return None
def fetch_and_save_geojson_by_name(city_name: str, out_dir: Path, prefer_full: bool = False) -> Path:
"""
通过城市名称解析 adcode, 并直接拉取与保存 GeoJSON.
"""
code = resolve_adcode_by_name(city_name, prefer_full=prefer_full)
if not code:
raise ValueError(f"无法通过名称解析到行政区划代码: {city_name}")
return fetch_and_save_geojson(code, city_name, out_dir)
if __name__ == "__main__":
# city_name = "湖北省"
# city_name = "武汉市"
# city_name = "十堰市"
# city_name = "钟祥市"
# city_name = ""
out_dir = Path("./data/vectors/")
out = fetch_and_save_geojson_by_name(city_name, out_dir, prefer_full=False)
print(f"Saved raw JSON and GeoJSON for {city_name}: {out}.")